access icon free Efficient sequential non-linear optimal power flow approach using incremental variables

Linear programming (LP) techniques and interior point methods (IPMs) have been used extensively for optimal power flow's solution. Both have their merits as well as limitations. There are situations in which a technique which combines the merits of both, is desirable. This study attempts to develop this technique using the well-known compact model, with hitherto unused non-linear approximation, in terms of incremental variables. Sequential applications of this non-linear incremental model, which is solved by using any of the IPM variants, leads to solution of the original problem. It avoids the vexed step-size restrictions, so common in sequential LP techniques. This model also allows for speed-accuracy trade-off. Results for few IEEE test systems and a fictitious 1000 bus system, have been obtained to explore the potential of this technique.

Inspec keywords: load flow; linear programming

Other keywords: incremental variables; vexed step-size restrictions avoidance; IEEE test systems; hitherto unused nonlinear approximation; sequential nonlinear optimal power flow approach; LP techniques; compact model; IPM variants; interior point methods; linear programming techniques; 1000 bus system; speed-accuracy trade-off

Subjects: Power transmission, distribution and supply; Optimisation techniques

References

    1. 1)
      • 16. Carpentier, J., Menniti, D., Scordino, N., Sorrentino, N.: ‘An algorithm for a direct solution of active secure economic dispatch with an improved economic statement’. Int. Conf. Power System Technology, 2000 vol. 3, pp. 12391244.
    2. 2)
      • 18. Zhang, W., Li, F., Tolbert, L.M.: ‘Review of reactive power planning: objectives, constraints, and algorithms’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 21772186 (doi: 10.1109/TPWRS.2007.907452).
    3. 3)
      • 15. Capitanescu, F., Glavic, M., Ernst, D., Wehenkel, L.: ‘Interior-point based algorithms for the solution of optimal power flow problems’, Electr. Power Syst. Res., 2007, 77, (5–6), pp. 508517 (doi: 10.1016/j.epsr.2006.05.003).
    4. 4)
      • 5. Happ, H.H.: ‘Optimal power dispatch’, IEEE Trans. Power Appar. Syst., 1974, PAS-93, (3), pp. 820830 (doi: 10.1109/TPAS.1974.293981).
    5. 5)
      • 2. Momoh, J.A., Adapa, R., El-Hawary, M.E.: ‘A review of selected optimal power flow literature to 1993. I: Nonlinear and quadratic programming approaches and II: Newton, linear programming and interior point methods’, IEEE Trans. Power Syst., 1999, 14, (1), pp. 96111 (doi: 10.1109/59.744492).
    6. 6)
      • 8. Chebbo, A.M., Irving, M.R.: ‘Combined active and reactive dispatch. I: problem formulation and solution algorithm and II: test results’, IEE Proc. Gener. Transm. Distrib., 1995, 142, (4), pp. 393405 (doi: 10.1049/ip-gtd:19951976).
    7. 7)
      • 20. Capitanescu, F., Wehenkel, L.: ‘Sensitivity-based approaches for handling discrete variables in optimal power flow computations’, IEEE Trans. Power Syst., 2010, 25, (4), pp. 17801789 (doi: 10.1109/TPWRS.2010.2044426).
    8. 8)
      • 4. Qiu, Z., Deconinck, G., Belmans, R.: ‘A literature survey of optimal power flow problems in the electricity market context’, IEEE Power Syst. Conf. Expo., 2009, 24, pp. 16.
    9. 9)
      • 19. Capitanescu, F., Ramos, J.L.M., Panciatici, P., et al: ‘State-of-the-art, challenges, and future trends in security constrained optimal power flow’, Electr. Power Syst. Res., 2011, 81, (8), pp. 17311741 (doi: 10.1016/j.epsr.2011.04.003).
    10. 10)
      • 14. Lin, W.M., Huang, C.H., Zhan, T.S.: ‘A hybrid current-power optimal power flow technique’, IEEE Trans. Power Syst., 2008, 23, (1), pp. 177185 (doi: 10.1109/TPWRS.2007.913301).
    11. 11)
      • 24. Zimmerman R.D., Murillo-Sanchez C.E., Gan D.: A MATLAB Power System Simulation Package; Available at: http://www.ee.pserc.cornell.edu/matpower/.
    12. 12)
      • 11. Lin, W.M., Huang, C.H., Zhan, T.S.: ‘Predictor-corrector interior point algorithm for current-based optimal power flow’. IEEE Power Engineering Society General Meeting, 2007, pp. 16.
    13. 13)
      • 9. Olofsson, M., Andersson, G., Soder, L.: ‘Linear programming based optimal power flow using second order sensitivities’, IEEE Trans. Power Syst., 1995, 10, (3), pp. 16911697 (doi: 10.1109/59.466472).
    14. 14)
      • 13. Torres, G.L., Quintana, V.H.: ‘An interior-point method for nonlinear optimal power flow using voltage rectangular coordinates’, IEEE Trans. Power Syst., 1998, 13, (4), pp. 12111218 (doi: 10.1109/59.736231).
    15. 15)
      • 12. Xie, L., Chiang, H.D.: ‘A enhanced multiple predictor-corrector interior point method for optimal power flow’. IEEE Power Engineering Society General Meeting, 2010, pp. 18.
    16. 16)
      • 7. Macfie, P.J., Taylor, G.A., Irving, M.R., et al: ‘Operational analysis of security constrained optimal reactive power flow solutions’. IEEE Power Engineering Society General Meeting; 2009, pp. 19.
    17. 17)
      • 10. Ponnambalam, K., Quintana, V.H., Vannelli, A.: ‘A fast algorithm for power system optimization problems using an interior point method’, IEEE Trans. Power Syst., 1992, 7, (2), pp. 892899 (doi: 10.1109/59.141801).
    18. 18)
      • 6. Sun, D.I., Ashley, B., Brewer, B., Hughes, A., Tinney, W.F.: ‘Optimal power flow by Newton approach’, IEEE Trans. Power Appar. Syst., 1984, PAS-103, (10), pp. 28642880 (doi: 10.1109/TPAS.1984.318284).
    19. 19)
      • 23. Power Systems Test Case Archive: Available at: http://www.ee.washington.edu/research/pstca/.
    20. 20)
      • 3. Dommel, H.W., Tinney, W.F.: ‘Optimal power flow solutions’, IEEE Trans. Power Appar. Syst., 1968, PAS-87, (10), pp. 18661876 (doi: 10.1109/TPAS.1968.292150).
    21. 21)
      • 22. Bijwe, P.R., Kelapure, S.M.: ‘Nondivergent fast power flow methods’, IEEE Trans. Power Syst., 2003, 18, (2), pp. 633638 (doi: 10.1109/TPWRS.2003.810905).
    22. 22)
      • 17. Lima, F.G.M., Soares, S., Santos, A., Almeida, K.C., Galiana, F.D.: ‘Numerical experiments with an optimal power flow algorithm based on parametric techniques’. IEEE Power Eng. Society Int. Conf. Power Industry Computer Applications, 2001, pp. 293297.
    23. 23)
      • 21. Wang, H., Murillo-Sanchez, C.E., Zimmerman, R.D., Thomas, R.J.: ‘On computational issues of market-based optimal power flow’, IEEE Trans. Power Syst., 2007, 22, (3), pp. 11851193 (doi: 10.1109/TPWRS.2007.901301).
    24. 24)
      • 1. Huneault, M., Galiana, F.D.: ‘A survey of the optimal power flow literature’, IEEE Trans. Power Syst., 1991, 6, (2), pp. 762770 (doi: 10.1109/59.76723).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2012.0750
Loading

Related content

content/journals/10.1049/iet-gtd.2012.0750
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading