access icon free Hybrid procedure including subtransmission systems and substations for reliability assessment

A new procedure focused on reliability analysis of subtransmission systems supported by the state enumeration technique is presented. This new methodology is conducted in three stages. First, a classical state enumeration reliability assessment is performed for the branch-node model of a subtransmission system, assuming that substations are perfectly reliable. Second, a detailed model of the subtransmission system is considered and the reliability of each substation is assessed by considering them in a ‘one-by-one’ process, supposing perfect operation for the branch-node model. Finally, the reliability indices calculated in the first and second stages are analytically combined to obtain the reliability indices for the subtransmission system (system reliability indices) and for the load nodes of the distribution system (load-node reliability indices). Test results show that the proposed methodology is suitable for both planning studies and 24 h-ahead security assessment.

Inspec keywords: power system security; hybrid power systems; power distribution reliability; power distribution planning; power transmission planning; power transmission reliability; substations

Other keywords: state enumeration reliability assessment; substation; power system planning; one-by-one process; load-node reliability index; branch-node model; distribution system; subtransmission system; security assessment; time 24 h

Subjects: Reliability; Power system planning and layout; Substations; Power system control; Power transmission, distribution and supply

References

    1. 1)
      • 9. CIGRE, ‘Substation reliability: comparison of two methods and suitable presentation of results,’ CIGRE, Study Committee 23, Paris, France, Technical report Electra – 99, June 1985.
    2. 2)
      • 11. Jiping, L., Wenyuan, L., Wei, Y.: ‘State enumeration technique combined with a labeling bus set approach for reliability evaluation of substation configuration in power systems’, Electr. Power Syst. Res., 2007, 77, pp. 401406 (doi: 10.1016/j.epsr.2006.04.001).
    3. 3)
      • 17. Kirschen, D.S., Jayaweera, D.: ‘Comparison of risk-based and deterministic security assessments’, IET Gener. Transm. Distrib., 2007, 1, (4), pp. 527533 (doi: 10.1049/iet-gtd:20060368).
    4. 4)
      • 19. Leite da Silva, A.M., de Carvalho Costa, J.G., da Fonseca Manso, L.A., Anders, G.J.: ‘Transmission capacity: availability, maximum transfer and reliability’, IEEE Trans. Power Syst., 2002, 17, (3), pp. 843849 (doi: 10.1109/TPWRS.2002.800961).
    5. 5)
      • 6. Billinton, R., Nighot, R.U.: ‘Incorporating station-related outages in composite system reliability analysis’, IEE Proc. Gener. Transm. Distrib., 2005, 152, (2), pp. 227232 (doi: 10.1049/ip-gtd:20041222).
    6. 6)
      • 14. Rei, A.M., Schilling, M.T.: ‘Reliability assessment of the Brazilian power system using enumeration and Monte Carlo’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 14801487 (doi: 10.1109/TPWRS.2008.922532).
    7. 7)
      • 2. Willis, H.L.: Power distributon planing: reference book’ (Marcel Dekker, Inc., New York–Basel, NY, 2004, 2nd edn.).
    8. 8)
      • 1. Billinton, R., Fotuhi-Firuzabad, M., Bertling, L.: ‘Bibliography on the application of probability methods in power system reliability evaluation (1996–1999)’, IEEE Trans. Power Syst., 2001, 16, (4), pp. 595602 (doi: 10.1109/59.962402).
    9. 9)
      • 16. Billinton, R., Allan, R.: ‘Reliability evaluation of power systems’ (Plenum Press, New York, 1996, 2nd edn.).
    10. 10)
      • 24. Kersting, W.H., Phillips, W.H., Doyle, R.: ‘Distribution feeder reliability studies’, IEEE Trans. Ind. Appl., 1999, 35, (2), pp. 319323 (doi: 10.1109/28.753623).
    11. 11)
      • 10. Satish, J., Billinton, R.: ‘Minimum cost analysis of station configurations’, IEEE Trans. Power Deliv., 1995, 10, (4), pp. 17991805 (doi: 10.1109/61.473377).
    12. 12)
      • 25. Coelho, A., De Castro, C.L.C., da Silva, M.G., Rodrigues, A.B.: ‘Inclusion of voltage drop and feeder loading constraints in the evaluation of reliability indices for radial distribution networks’, IEE Proc. Gener. Transm. Distrib., 2006, 153, (6), pp. 661669 (doi: 10.1049/ip-gtd:20050419).
    13. 13)
      • 3. Brown, R.E.: ‘Electric power distribution reliability’, in Willis, H.L. (Ed.): ‘ser. Electric power engineering’ (CRC Press, Boca Raton, FL 33487–2742, 2009, 2nd edn.).
    14. 14)
      • 7. He, J., Cheng, L., Kirschen, D.S., Sun, Y.: ‘Optimising the balance between security and economy on a probabilistic basis’, IET Gener. Transm. Distrib., 2010, 4, (12), pp. 12751287 (doi: 10.1049/iet-gtd.2010.0039).
    15. 15)
      • 12. Martínez-Lacanina, P.J., de la Villa-Jaén, A., Martínez-Ramos, J.L.: ‘A new technique for short-term reliability assessment of transmission and distribution networks’. Proc. Ninth Int. Conf. Probabilistic Methods Applied Power Systems (PMAPS-2006), KTH, Stockholm, Sweden, June, 11th – 15th 2006.
    16. 16)
      • 8. Goel, L., Aparna, V.P., Wang, P.: ‘A Framework to implement supply and demand side contingency management in reliability assessment of restructured power systems’, IEEE Trans. Power Syst., 2007, 22, (1), pp. 205212 (doi: 10.1109/TPWRS.2006.887962).
    17. 17)
      • 13. Task Force, R.T.S.: ‘The IEEE reliability test system – 1996’, IEEE Trans. Power Syst., 1999, 14, (3), pp. 10101020 (doi: 10.1109/59.780914).
    18. 18)
      • 5. Allan, R.N., Ochoa, J.R.: ‘Modeling and assessment of station originated outages for composite systems reliability evaluation’, IEEE Trans. Power Syst., 1988, 3, (1), pp. 158165 (doi: 10.1109/59.43193).
    19. 19)
      • 21. Rosehart, W., Aguado, J.A.: ‘Alternative optimal power flow formulations’. Proc. 14th Power System Computation Conf. (PSCC-2002), Seville, Spain, 24–28June 2002.
    20. 20)
      • 4. FERC – Staff Reports, ‘NERC Standards: Electric Reliability,’ Federal Energy Regulatory Commision, Technical report, Mandatory Effective Date: May 13, 2009. Available atwww.ferc.gov/industries/electric/indus-act/reliability/standards.asp.
    21. 21)
      • 22. Capitanescu, F., Martinez Ramos, J.L., Panciatici, P., et al: ‘State-of-the-art, challenges, and future trends in security constrained optimal power flow’, Electr. Power Syst. Res., 2011, 81, (8), pp. 17311741 (doi: 10.1016/j.epsr.2011.04.003).
    22. 22)
      • 23. Billinton, R., Wangdee, W.: ‘Impact of utilising sequential and nonsequential simulation techniques in bulk-electric-system reliability assessment’, IEE Proc. Gener. Transm. Distrib., 2005, 152, (5), pp. 623628 (doi: 10.1049/ip-gtd:20045098).
    23. 23)
      • 20. Purchala, K., Meeus, L., Van Dommelen, D., Belmans, R.: ‘Usefulness of DC power flow for active power flow analysis’. IEEE Proc. Power Engineering Society General Meeting, vol. 1, 12–16 June 2005, pp. 454459.
    24. 24)
      • 18. Li, W.: ‘Risk assessment of power systems: model, methods, and applications’ (John Wiley & Sons, Inc., ser. IEEE Press on Power Engineering. Hoboken, New Jersey, 2005).
    25. 25)
      • 15. Billinton, R., Li, W.: ‘Reliability assessment of electric power systems using Monte Carlo methods’ (Plenum, New York, 1994).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2012.0748
Loading

Related content

content/journals/10.1049/iet-gtd.2012.0748
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading