Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free DC fault ride-through capability and STATCOM operation of a HVDC hybrid voltage source converter

High voltage direct current (HVDC) transmission systems are becoming increasingly popular when compared to conventional AC transmission methods. HVDC voltage source converters (VSC) can offer advantages over traditional HVDC current source converter topologies; as such, it is expected that HVDC-VSCs will be further exploited with the growth of HVDC transmission. This study presents the DC fault ride through capability and new static synchronous compensator (STATCOM) modes of operation for the recently published alternate arm converter, intended for the HVDC market. Operation and fault ride through of the converter during a local terminal to terminal short circuit of the DC-link is demonstrated; during the fault STATCOM operation is also demonstrated.

References

    1. 1)
      • 2. Pan, J., Nuqui, R., Srivastava, K., Jonsson, T., Holmberg, P., Hafner, Y.-J.: ‘AC grid with embedded VSC-HVDC for secure and efficient power delivery’. IEEE Energy 2030 Conf., 2008, ENERGY 2008, 17–18 2008, pp. 16.
    2. 2)
      • 8. Hagiwara, M., Akagi, H.: ‘Control and experiment of pulse width-modulated modular multilevel converters’, IEEE Trans. Power Electron., 2009, 24, (7), pp. 17371746 (doi: 10.1109/TPEL.2009.2014236).
    3. 3)
      • 15. Yang, J., Zheng, J., Tang, G., He, Z.: ‘Characteristics and recovery performance of VSC-HVDC DC transmission line fault’. 2010 Asia-Pacific Power and Energy Engineering Conf. (APPEEC), March 2010, pp. 14.
    4. 4)
      • 17. Schmitt, D., Wang, Y., Weyh, T., Marquardt, R.: ‘DC-side fault current management in extended multiterminal-HVDC-grids’. 2012 Ninth Int. Multi-Conf. Systems, Signals and Devices (SSD), March 2012, pp. 15.
    5. 5)
      • 21. Wei, X., Tang, G.: ‘Analysis and control VSC-HVDC under unbalanced ac conditions’. Int. Conf. Power System Technology, 2006. PowerCon 2006, October 2006, pp. 15.
    6. 6)
      • 14. Merlin, M., Green, T., Mitcheson, P., Trainer, D., Critchley, D., Crookes, R.: ‘A new hybrid multi-level voltage-source converter with dc fault blocking capability’. Ninth IET Int. Conf. AC and DC Power Transmission, 2010, ACDC, October 2010, pp. 15.
    7. 7)
      • 1. Schettler, F., Huang, H., Christl, N.: ‘HVDC transmission systems using voltage sourced converters design and applications’. IEEE Power Engineering Society Summer Meeting, 2000, 2000, vol. 2, pp. 715720.
    8. 8)
      • 5. Allebrod, S., Hamerski, R., Marquardt, R.: ‘New transformerless, scalable modular multilevel converters for HVDC-transmission’. IEEE Power Electronics Specialists Conf., 2008, PESC 2008, 15–19, 2008, pp. 174179.
    9. 9)
      • 16. Marquardt, R.: ‘Modular multilevel converter: an universal concept for HVDC-networks and extended DC-bus-applications’. 2010 Int., Power Electronics Conf. (IPEC), June 2010, pp. 502507.
    10. 10)
      • 6. Glinka, M., Marquardt, R.: ‘A new AC/AC multilevel converter family’, IEEE Trans. Ind. Electron., 2005, 52, (3), pp. 662669 (doi: 10.1109/TIE.2005.843973).
    11. 11)
      • 4. Bahrman, M., Johnson, B.: ‘The ABCs of HVDC transmission technologies’, IEEE Power Energy Mag., 2007, 5, (2), pp. 3244 (doi: 10.1109/MPAE.2007.329194).
    12. 12)
      • 18. Holmes, D., Lipo, T., Lipo, T.: ‘Pulse width modulation for power converters: principles and practice’ (IEEE Press Series on Power Engineering. IEEE Press, 2003).
    13. 13)
      • 20. Leon, A., Mauricio, J., Solsona, J., Go andmez Expo andsito, A.: ‘Adaptive control strategy for VSC-based systems under unbalanced network conditions’, IEEE Trans. Smart Grid, 2010, 1, (3), pp. 311319 (doi: 10.1109/TSG.2010.2076840).
    14. 14)
      • 12. Feldman, R., Tomasini, M., Clare, J., Wheeler, P., Trainer, D., Whitehouse, R.: ‘A hybrid voltage source converter arrangement for HVDC power transmission and reactive power compensation’. IET–PEMD 2010, Brighton, UK, 19–21 April 2010.
    15. 15)
      • 3. Flourentzou, N., Agelidis, V., Demetriades, G.: ‘VSC-based HVDC power transmission systems: an overview’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 592602 (doi: 10.1109/TPEL.2008.2008441).
    16. 16)
      • 13. Feldman, R., Tomasini, M., Clare, J., Wheeler, P., Trainer, D., Whitehouse, R.: ‘A low loss modular multilevel voltage source converter for HVDC power transmission and reactive power compensation’. IET–ACDC 2010, London, UK, 20–21 October, 2010.
    17. 17)
      • 11. Amankwah, E., Clare, J., Wheeler, P., Watson, A.: ‘Multi carrier PWM of the modular multilevel VSC for medium voltage applications’. Annual IEEE Applied Power Electronics Conf. and Exposition (APEC), 2012 27th, February 2012, pp. 23982406.
    18. 18)
      • 7. Hagiwara, M., Akagi, H.: ‘PWM control and experiment of modular multilevel converters’. IEEE Power Electronics Specialists Conf., 2008, PESC 2008, 15–19, 2008, pp. 154161.
    19. 19)
      • 9. Davidson, C., Trainer, D.: ‘Innovative concepts for hybrid multi-level converters for HVDC power transmission’. Ninth IET Int. Conf. AC and DC Power Transmission, 2010, ACDC, October 2010, pp. 15.
    20. 20)
      • 19. Wu, B.: ‘High-power converters and AC drives’ (John Wiley & Sons, Inc, Hoboken, NJ, 2006).
    21. 21)
      • 10. Amankwah, E., Clare, J., Wheeler, P., Watson, A.: ‘Cell capacitor voltage control in a parallel hybrid modular multilevel voltage source converter for HVDC applications’. IET–PEMD 2012, Bristol, UK, 27–29 March 2012.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2012.0713
Loading

Related content

content/journals/10.1049/iet-gtd.2012.0713
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address