access icon free A model for optimal scheduling of hydro thermal systems including pumped-storage and wind power

This study describes a model for optimal scheduling of hydro thermal systems with multiple hydro reservoirs. Inflow to hydropower reservoirs, wind power and exogenously given prices are treated as stochastic variables. Power flow constraints are included through a linearised power flow model. A linearised representation of start-up costs for generating units and pumps is provided. The model is well suited for medium- and long-term hydro thermal generation scheduling and has the capability of capturing detailed system constraints by using a fine time resolution. The presented model is tested on a realistic representation of the Icelandic power system, considering some potential future system extensions.

Inspec keywords: wind power plants; load flow; pumped-storage power stations; power generation scheduling; reservoirs; hydrothermal power systems

Other keywords: fine time resolution; start-up costs; linearised representation; stochastic variables; generating units; Icelandic power system; power flow constraints; pumped-storage; hydropower reservoirs; multiple hydro reservoirs; wind power; long-term hydrothermal generation scheduling; medium-term hydrothermal generation scheduling

Subjects: Power transmission, distribution and supply; Pumped storage stations and plants; Wind power plants; Oceanographic and hydrological techniques and equipment; Thermal power stations and plants

References

    1. 1)
      • 15. Warland, G., Haugstad, A., Huse, E.S.: ‘Including thermal unit start-up costs in a long-term hydro thermal scheduling model’. Proc. 16th Power System Computation Conf., Glasgow, Scotland, 2008.
    2. 2)
      • 26. Mo, B., Gjelsvik, A., Grundt, A., Kåresen, K.: ‘Optimisation of hydropower operation in a liberalised market with focus on price modelling’. Proc. PowerTech 2001, Porto, Portugal, vol. 1, 2001.
    3. 3)
      • 13. Gjelsvik, A., Belsnes, M.M., Haugstad, A.: ‘An algorithm for stochastic medium-term hydrothermal scheduling under spot price uncertainty’. Proc. 13th Power System Computation Conf., Trondheim, Norway, 1999.
    4. 4)
      • 23. Helseth, A.: ‘A linear optimal power flow model considering nodal distribution of losses’. Proc. Ninth Int. Conf. on the European Energy Market, Florence, Italy, 2012.
    5. 5)
      • 14. Stott, B., Marinho, J.L.: ‘Linear programming for power-system network security applications’, IEEE Trans. Power Appar. Syst., 1979, PAS-98, (3), pp. 837848 (doi: 10.1109/TPAS.1979.319296).
    6. 6)
      • 2. Lindqvist, J.: ‘Operation of a hydrothermal electric system: a multistage decision process’, AIEE Trans. III Power Appar. Syst., 1962, 81, (3), pp. 17 (doi: 10.1109/AIEEPAS.1962.4501248).
    7. 7)
      • 1. Stage, S., Larsson, Y.: ‘Incremental cost of water power’, Trans. Am. Inst. Electr. Eng., 1961, 80, (3), pp. 361364.
    8. 8)
      • 4. Wolfgang, O., Haugstad, A., Mo, B., Gjelsvik, A., Wangensteen, I., Doorman, G.: ‘Hydro reservoir handling in Norway before and after deregulation’, Energy, 2009, 34, (10), pp. 16421651 (doi: 10.1016/j.energy.2009.07.025).
    9. 9)
      • 7. Gorenstin, B.G., Campodónico, N., Costa, J.P., Pereira, M.V.F.: ‘Stochastic optimization of a hydro–thermal system including network constraints’, IEEE Trans. Power Syst., 1992, 7, (2), pp. 791797 (doi: 10.1109/59.141787).
    10. 10)
      • 22. dos Santos, T.N., Diniz, A.L.: ‘A dynamic piecewise linear model for DC transmission losses in optimal scheduling problems’, IEEE Trans. Power Syst., 2011, 26, (2), pp. 508519 (doi: 10.1109/TPWRS.2010.2057263).
    11. 11)
      • 12. Rebennack, S., Flach, B., Pereira, M.V.F., Pardalos, P.M.: ‘Stochastic hydro-thermal scheduling under CO2 emissions constraints’, IEEE Trans. Power Syst., 2012, 27, (1), pp. 5868 (doi: 10.1109/TPWRS.2011.2140342).
    12. 12)
      • 3. Fosso, O.B., Gjelsvik, A., Haugstad, A., Mo, B., Wangensteen, I.: ‘Generation scheduling in a deregulated system. The Norwegian case’, IEEE Trans. Power Syst., 1999, 14, pp. 7581 (doi: 10.1109/59.744487).
    13. 13)
      • 27. Infanger, G., Morton, D.P.: ‘Cut sharing for multistage stochastic linear programs with interstage dependency’, Math. Program., 1996, 75, (2), pp. 241256 (doi: 10.1007/BF02592154).
    14. 14)
      • 11. Philpott, A., de Matos, V.: ‘Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion’, Eur. J. Oper. Res., 2012, 218, (2), pp. 470483 (doi: 10.1016/j.ejor.2011.10.056).
    15. 15)
      • 19. de Matos, V.L., Finardi, E.C.: ‘A computational study of a stochastic optimization model for long term hydrothermal scheduling’, Int. J. Electr. Power Energy Syst., 2012, 43, (1), pp. 14431452 (doi: 10.1016/j.ijepes.2012.06.021).
    16. 16)
      • 6. Pereira, M.V.F., Pinto, L.M.V.G.: ‘Multi-stage stochastic optimization applied to energy planning’, Math. Program., 1991, 52, pp. 359375 (doi: 10.1007/BF01582895).
    17. 17)
      • 10. Flach, B., Barroso, L., Pereira, M.: ‘Long-term optimal allocation of hydro generation for a price-maker company in a competitive market: latest developments and a stochastic dual dynamic programming approach’, IET Gener. Transm. Distrib., 2010, 4, (2), pp. 299314 (doi: 10.1049/iet-gtd.2009.0107).
    18. 18)
      • 21. Stott, B., Jardim, J., Alsaç, O.: ‘DC power flow revisited’, IEEE Trans. Power Syst., 2009, 24, (3), pp. 12901300 (doi: 10.1109/TPWRS.2009.2021235).
    19. 19)
      • 5. Pereira, M.V.F.: ‘Optimal stochastic operations scheduling of large hydroelectric systems’, Electr. Power Energy Syst., 1989, 11, (3), pp. 161169 (doi: 10.1016/0142-0615(89)90025-2).
    20. 20)
      • 8. Granville, S., Oliveira, G.C., Thomé, L.M., et al: ‘Stochastic optimization of transmission constrained and large scale hydrothermal systems in a competitive framework’. Proc. IEEE General Meeting, Toronto, Canada, 2003.
    21. 21)
      • 20. Wood, A., Wollenberg, B.F.: ‘Power generation, operation and control’ (John Wiley & Sons, 1996, 2nd edn.).
    22. 22)
      • 9. Philpott, A., Guan, Z.: ‘On the convergence of stochastic dual dynamic programming and related methods’, Oper. Res. Lett., 2008, 36, (4), pp. 450455 (doi: 10.1016/j.orl.2008.01.013).
    23. 23)
      • 16. Birge, J.R., Loveaux, F.: ‘Introduction to stochastic programming’ (Springer, 2011, 2nd edn.).
    24. 24)
      • 24. Eriksen, P.B., Ravn, H.F., Pedersen, J., Johannesen, A., Haugstad, A.: ‘Hydrothermal scheduling; computational approaches for optimal scheduling of mixed hydro thermal systems’. Proc. Hydropower into the next century, A.-M. Int., Ed., Barcelona, Spain, 1995.
    25. 25)
      • 25. Weber, C., Uncertainty in the electric power industry: methods and models for decision support, in ‘Operations research and management science’ (Springer, 20041st edn., International Series).
    26. 26)
      • 17. Røtting, T., Gjelsvik, A.: ‘Stochastic dual dynamic programming for seasonal scheduling in the Norwegian power system’, IEEE Trans. Power Syst., 1992, 7, (1), pp. 273279 (doi: 10.1109/59.141714).
    27. 27)
      • 18. Gjelsvik, A., Mo, B., Haugstad, A.: Handbook of power systems I. (Springer, 2010), Long- and medium-term operations planning and stochastic modelling in hydro-dominated power systems based on stochastic dual dynamic programming, pp. 3355.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2012.0639
Loading

Related content

content/journals/10.1049/iet-gtd.2012.0639
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading