http://iet.metastore.ingenta.com
1887

A model for optimal scheduling of hydro thermal systems including pumped-storage and wind power

A model for optimal scheduling of hydro thermal systems including pumped-storage and wind power

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study describes a model for optimal scheduling of hydro thermal systems with multiple hydro reservoirs. Inflow to hydropower reservoirs, wind power and exogenously given prices are treated as stochastic variables. Power flow constraints are included through a linearised power flow model. A linearised representation of start-up costs for generating units and pumps is provided. The model is well suited for medium- and long-term hydro thermal generation scheduling and has the capability of capturing detailed system constraints by using a fine time resolution. The presented model is tested on a realistic representation of the Icelandic power system, considering some potential future system extensions.

References

    1. 1)
      • 1. Stage, S., Larsson, Y.: ‘Incremental cost of water power’, Trans. Am. Inst. Electr. Eng., 1961, 80, (3), pp. 361364.
    2. 2)
      • 2. Lindqvist, J.: ‘Operation of a hydrothermal electric system: a multistage decision process’, AIEE Trans. III Power Appar. Syst., 1962, 81, (3), pp. 17 (doi: 10.1109/AIEEPAS.1962.4501248).
    3. 3)
      • 3. Fosso, O.B., Gjelsvik, A., Haugstad, A., Mo, B., Wangensteen, I.: ‘Generation scheduling in a deregulated system. The Norwegian case’, IEEE Trans. Power Syst., 1999, 14, pp. 7581 (doi: 10.1109/59.744487).
    4. 4)
      • 4. Wolfgang, O., Haugstad, A., Mo, B., Gjelsvik, A., Wangensteen, I., Doorman, G.: ‘Hydro reservoir handling in Norway before and after deregulation’, Energy, 2009, 34, (10), pp. 16421651 (doi: 10.1016/j.energy.2009.07.025).
    5. 5)
      • 5. Pereira, M.V.F.: ‘Optimal stochastic operations scheduling of large hydroelectric systems’, Electr. Power Energy Syst., 1989, 11, (3), pp. 161169 (doi: 10.1016/0142-0615(89)90025-2).
    6. 6)
      • 6. Pereira, M.V.F., Pinto, L.M.V.G.: ‘Multi-stage stochastic optimization applied to energy planning’, Math. Program., 1991, 52, pp. 359375 (doi: 10.1007/BF01582895).
    7. 7)
      • 7. Gorenstin, B.G., Campodónico, N., Costa, J.P., Pereira, M.V.F.: ‘Stochastic optimization of a hydro–thermal system including network constraints’, IEEE Trans. Power Syst., 1992, 7, (2), pp. 791797 (doi: 10.1109/59.141787).
    8. 8)
      • 8. Granville, S., Oliveira, G.C., Thomé, L.M., et al: ‘Stochastic optimization of transmission constrained and large scale hydrothermal systems in a competitive framework’. Proc. IEEE General Meeting, Toronto, Canada, 2003.
    9. 9)
      • 9. Philpott, A., Guan, Z.: ‘On the convergence of stochastic dual dynamic programming and related methods’, Oper. Res. Lett., 2008, 36, (4), pp. 450455 (doi: 10.1016/j.orl.2008.01.013).
    10. 10)
      • 10. Flach, B., Barroso, L., Pereira, M.: ‘Long-term optimal allocation of hydro generation for a price-maker company in a competitive market: latest developments and a stochastic dual dynamic programming approach’, IET Gener. Transm. Distrib., 2010, 4, (2), pp. 299314 (doi: 10.1049/iet-gtd.2009.0107).
    11. 11)
      • 11. Philpott, A., de Matos, V.: ‘Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion’, Eur. J. Oper. Res., 2012, 218, (2), pp. 470483 (doi: 10.1016/j.ejor.2011.10.056).
    12. 12)
      • 12. Rebennack, S., Flach, B., Pereira, M.V.F., Pardalos, P.M.: ‘Stochastic hydro-thermal scheduling under CO2 emissions constraints’, IEEE Trans. Power Syst., 2012, 27, (1), pp. 5868 (doi: 10.1109/TPWRS.2011.2140342).
    13. 13)
      • 13. Gjelsvik, A., Belsnes, M.M., Haugstad, A.: ‘An algorithm for stochastic medium-term hydrothermal scheduling under spot price uncertainty’. Proc. 13th Power System Computation Conf., Trondheim, Norway, 1999.
    14. 14)
      • 14. Stott, B., Marinho, J.L.: ‘Linear programming for power-system network security applications’, IEEE Trans. Power Appar. Syst., 1979, PAS-98, (3), pp. 837848 (doi: 10.1109/TPAS.1979.319296).
    15. 15)
      • 15. Warland, G., Haugstad, A., Huse, E.S.: ‘Including thermal unit start-up costs in a long-term hydro thermal scheduling model’. Proc. 16th Power System Computation Conf., Glasgow, Scotland, 2008.
    16. 16)
      • 16. Birge, J.R., Loveaux, F.: ‘Introduction to stochastic programming’ (Springer, 2011, 2nd edn.).
    17. 17)
      • 17. Røtting, T., Gjelsvik, A.: ‘Stochastic dual dynamic programming for seasonal scheduling in the Norwegian power system’, IEEE Trans. Power Syst., 1992, 7, (1), pp. 273279 (doi: 10.1109/59.141714).
    18. 18)
      • 18. Gjelsvik, A., Mo, B., Haugstad, A.: Handbook of power systems I. (Springer, 2010), Long- and medium-term operations planning and stochastic modelling in hydro-dominated power systems based on stochastic dual dynamic programming, pp. 3355.
    19. 19)
      • 19. de Matos, V.L., Finardi, E.C.: ‘A computational study of a stochastic optimization model for long term hydrothermal scheduling’, Int. J. Electr. Power Energy Syst., 2012, 43, (1), pp. 14431452 (doi: 10.1016/j.ijepes.2012.06.021).
    20. 20)
      • 20. Wood, A., Wollenberg, B.F.: ‘Power generation, operation and control’ (John Wiley & Sons, 1996, 2nd edn.).
    21. 21)
      • 21. Stott, B., Jardim, J., Alsaç, O.: ‘DC power flow revisited’, IEEE Trans. Power Syst., 2009, 24, (3), pp. 12901300 (doi: 10.1109/TPWRS.2009.2021235).
    22. 22)
      • 22. dos Santos, T.N., Diniz, A.L.: ‘A dynamic piecewise linear model for DC transmission losses in optimal scheduling problems’, IEEE Trans. Power Syst., 2011, 26, (2), pp. 508519 (doi: 10.1109/TPWRS.2010.2057263).
    23. 23)
      • 23. Helseth, A.: ‘A linear optimal power flow model considering nodal distribution of losses’. Proc. Ninth Int. Conf. on the European Energy Market, Florence, Italy, 2012.
    24. 24)
      • 24. Eriksen, P.B., Ravn, H.F., Pedersen, J., Johannesen, A., Haugstad, A.: ‘Hydrothermal scheduling; computational approaches for optimal scheduling of mixed hydro thermal systems’. Proc. Hydropower into the next century, A.-M. Int., Ed., Barcelona, Spain, 1995.
    25. 25)
      • 25. Weber, C., Uncertainty in the electric power industry: methods and models for decision support, in ‘Operations research and management science’ (Springer, 20041st edn., International Series).
    26. 26)
      • 26. Mo, B., Gjelsvik, A., Grundt, A., Kåresen, K.: ‘Optimisation of hydropower operation in a liberalised market with focus on price modelling’. Proc. PowerTech 2001, Porto, Portugal, vol. 1, 2001.
    27. 27)
      • 27. Infanger, G., Morton, D.P.: ‘Cut sharing for multistage stochastic linear programs with interstage dependency’, Math. Program., 1996, 75, (2), pp. 241256 (doi: 10.1007/BF02592154).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2012.0639
Loading

Related content

content/journals/10.1049/iet-gtd.2012.0639
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address