access icon free Novel way for classification and type detection of voltage sag

This study presents a new classification of voltage sags which is based on its types, characteristic voltage and zero-sequence component of voltage. It is extremely difficult to distinguish between the voltage sags which have same type, same characteristic voltage and same zero-sequence component of voltage due to load effects and hence such classification is significant. The proposed classification is mathematically justified by introducing two new indices, namely, phase-to-neutral and phase-to-phase voltage indices. Using the theoretical relation between these two indices, it has been revealed that the voltage sags which have the same type, same characteristic voltage and same zero-sequence component of voltages, have same mathematical relations. Further, to reveal the accuracy of the proposed classification and type detection, it is validated through recorded waveforms available in IEEE database, Scottish Power, data obtained from Matlab simulation under different conditions of voltage sags and data of real power station. In addition, the proposed classification and type detection are compared with other established algorithms for type detection of voltage sags. The comparative results show that the proposed classification not only removes the existing anomalies in the earlier proposals but also shows its superiority by presenting more accurate and less confusing results.

Inspec keywords: power supply quality

Other keywords: voltage sag type detection; phase-to-neutral voltage index; Scottish Power; characteristic voltage; zero-sequence voltage component; voltage sag classification; recorded waveforms; Matlab simulation; IEEE database; load effect; phase-to-phase voltage index

Subjects: Power supply quality and harmonics

References

    1. 1)
      • 10. Leborgne, R.C., Olguin, G., Bollen, M.H.J.: ‘The influence of PQ-monitor connection on voltage dip measurement’. Proc. IEE MedPower, Cyprus, 2004, pp. 3134.
    2. 2)
      • 7. Madrigal, M., Rocha, B.H.: ‘A contribution for characterizing measured three-phase unbalanced voltage sags algorithm’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 18851890 (doi: 10.1109/TPWRD.2007.893438).
    3. 3)
      • 16. Chang, C.S., Loh, P.C.: ‘Integration of fault current limiters on power system for voltage quality improvement’, Electr. Power Syst. Res., 2001, 57, (2), pp. 8392 (doi: 10.1016/S0378-7796(01)00095-5).
    4. 4)
      • 21. Djokic, S.Z., Milanovic, J.V., Chapman, D.J., McGranaghan, M.F.: ‘Shortfalls of existing methods for classification and presentation of voltage reduction event’, IEEE Trans. Power Deliv., 2005, 20, (2), pp. 16401649 (doi: 10.1109/TPWRD.2004.833880).
    5. 5)
      • 25. Naidoo, R., Pillay, P.: ‘A new method of voltage sag and swell detection’, IEEE Trans. Power Deliv., 2007, 22, (2), pp. 10561063 (doi: 10.1109/TPWRD.2007.893185).
    6. 6)
      • 15. Didden, M., Jaeger, E.D., D'haeseleer, W., Belmans, R.: ‘How to connect a voltage sag-measuring device: phase to phase or phase to neutral?’, IEEE Trans. Power Deliv., 2005, 20, (2), pp. 11741181 (doi: 10.1109/TPWRD.2004.834855).
    7. 7)
      • 24. Bae, B., Jeong, J., Lee, J., Han, B.: ‘Novel sag detection method for line-interactive dynamic voltage restorer’, IEEE Trans. Power Deliv., 2010, 25, (2), pp. 12101211 (doi: 10.1109/TPWRD.2009.2037520).
    8. 8)
      • 23. Mansor, M., Rahim, N.A.: ‘Voltage sag detection-A survey’. IEEE International Conf. Technical Postgraduates (TECHPOS), Kuala Lumpur, Malaysia, 2009, pp. 16.
    9. 9)
      • 8. Thakur, P., Singh, A.K., Bansal, R.C.: ‘A novel way to distinguish single phase dips through potential gradient method’, Electr. Power Compon. Syst., 2012, 40, (3), pp. 336347 (doi: 10.1080/15325008.2011.631082).
    10. 10)
      • 9. Ignatova, V., Granjon, P., Bacha, S.: ‘Space vector method for voltage dips and swells analysis’, IEEE Trans. Power Deliv., 2009, 24, (4), pp. 20542061 (doi: 10.1109/TPWRD.2009.2028787).
    11. 11)
      • 19. Lotfifard, S., Kezunovic, M., Mousavi, M.J.: ‘Voltage sag data utilization for distribution fault location’, IEEE Trans. Power Deliv., 2011, 26, (2), pp. 12391246 (doi: 10.1109/TPWRD.2010.2098891).
    12. 12)
      • 3. Bollen, M.H.J.: ‘Algorithm for characterizing measured three phase unbalanced voltage dips’, IEEE Trans. Power Deliv., 2003, 18, (3), pp. 937944 (doi: 10.1109/TPWRD.2003.813879).
    13. 13)
      • 17. Andersson, T., Nilsson, D.: ‘Test and evaluation of voltage dip immunity’. STRI Report, Sweden, 2002.
    14. 14)
      • 4. Zhang, L., Bollen, M.H.J.: ‘Characteristics of voltage dips in power system’, IEEE Trans. Power Deliv., 2000, 15, (2), pp. 827832 (doi: 10.1109/61.853026).
    15. 15)
      • 18. Leborgne, R.C., Olguin, G., Filho, J.M., Bollen, M.H.J.: ‘Differences in voltage dip exposure depending upon phase-to-phase and phase-to-neutral monitoring connection’, IEEE Trans. Power Deliv., 2007, 22, (2), pp. 11531159 (doi: 10.1109/TPWRD.2007.893436).
    16. 16)
      • 6. Bollen, M.H.J., Zhang, L.: ‘Characterization of three-phase unbalanced dips (as easy as one-two-three?)’. Power Engineering Society Summer Meeting, Seattle, WA, USA, 2000, vol. 2, pp. 899904.
    17. 17)
      • 5. Bollen, M.H.J., Zhang, L.D.: ‘Different method for classification of three phase unbalanced voltage dips due to fault’, Electr. Power Syst. Res., 2003, 66, (1), pp. 5969 (doi: 10.1016/S0378-7796(03)00072-5).
    18. 18)
      • 26. Leborgne, R.C., Karlsson, D., Olguin, G.: ‘Analysis of voltage sag phasor dynamic’. IEEE Power Tech, Russia, 2005, pp. 16.
    19. 19)
      • 2. Bollen, M.H.J.: ‘Characteristics of voltage sags experienced by three phase adjustable speed drives’, IEEE Trans. Power Deliv., 1997, 12, (4), pp. 16661671 (doi: 10.1109/61.634188).
    20. 20)
      • 1. Bollen, M.H.J.: ‘Understanding power quality problem: voltage sag and interruption’ (IEEE Press, New York, 2000).
    21. 21)
      • 27. Leborgne, R.C., Karlsson, D.: ‘Phasor based voltage sag monitoring and characterization’. IEEE, 18th Int. Conf. Electrical Distribution, Turin, 2005, pp. 14.
    22. 22)
      • 11. Matei, F.M., Moga, M., Pana, A.: ‘New method for voltage sags characteristics detection in electrical network’. Melecon 15th IEEE Mediterranean Electrotechnical Conf., 2010, pp. 16121617.
    23. 23)
      • 12. Bollen, M.H.J., Goossens, P., Robert, A.: ‘Assessment of voltage dips in HV-network: deduction of complex voltages from the measured RMS voltages’, IEEE Trans. Power Deliv., 2004, 19, (2), pp. 783790 (doi: 10.1109/TPWRD.2003.823202).
    24. 24)
      • 13. Pedra, J., Corcoles, F., Sainz, L.: ‘Effects of unsymmetrical voltage sags on squirrel-cage induction motors’, IET Gener. Transm. Distrib., 2007, 1, (5), pp. 769775 (doi: 10.1049/iet-gtd:20060555).
    25. 25)
      • 22. Morgan, R.L.: ‘IEEE power quality event characterization: fault related test wave form’, http://grouper.ieee.org/groups/1159/2/index.html, 1999.
    26. 26)
      • 14. Lucio, J., Espinosa-Juarez, E., Hernandez, A.: ‘Voltage sag state estimation in power systems by applying genetic algorithms’, IET Gener. Transm. Distrib., 2011, 5, (2), pp. 223230 (doi: 10.1049/iet-gtd.2010.0148).
    27. 27)
      • 20. CIGRE/CIRED/UIE Joint Working Group C4.110: ‘Voltage dip immunity of equipment and installations’, 2010, pp. 19.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2012.0435
Loading

Related content

content/journals/10.1049/iet-gtd.2012.0435
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading