Dynamic formulation and approximation methods to solve economic dispatch problems

Dynamic formulation and approximation methods to solve economic dispatch problems

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Economic dispatch (ED) is an optimisation tool that is used to allocate active load demands to the generating units through optimising the fuel generation cost function subject to the different operational constraints. The high non-linearity of the power system imposes mathematical challenges in formulating the generation cost function models, which makes the ED problem hard to solve. This study introduces two ideas to solve issues related to the ED problem. First, a dynamic formulation technique is developed to optimally allocate the change in the total active load demand to the generating units. This technique is shown to be insensitive to the optimality of the initial active load distribution unlike the base point and participation factor method. Moreover, it guarantees an optimal distribution among the generating units due the change in the active load demand. Second, a novel approximation of the non-convex generation cost function is developed to solve non-convex ED problem with the transmission losses. This approximation enables the use of gradient and Newton techniques to solve the non-convex ED problem with valve point loading effect and transmission losses in an analytic approach. This approximation is compared with some heuristic optimisation techniques.


    1. 1)
      • 1. Wood, A.J., Wollenberg, B.F.: ‘Power generation, operation and control’ (Wiley, New York, 1996, 1984, 2nd edn.).
    2. 2)
      • 2. Raol, C.S., Nagaraju, S.S., Raju, P.S., Reddy, M.R.: ‘Optimized integral controller for economic dispatch in a two area system based on Hooke-Jeeves algorithm’, J. Eng. Appl. Sci., 2007, 2, (6), pp. 4956.
    3. 3)
      • 3. Niknam, T., Mojarrad, H.D., Meymand, H.Z., Firouzi, B.B.: ‘A new honey bee mating optimization algorithm for non-smooth economic dispatch’, Energy, 2011, 36, (2), pp. 896908 (doi: 10.1016/
    4. 4)
      • 4. Duman, S., Guvenc, U., Yorukeren, N.: ‘Gravitational search algorithm for economic dispatch with valve point effects’, Int. Rev. Electr. Eng., 2010, 5, (6), pp. 28902895.
    5. 5)
      • 5. Amjady, N., Nasiri-Rad, H.: ‘Economic dispatch using an efficient real-coded genetic algorithm’, IET Gener. Trans. Distrib., 2009, 3, (3), pp. 266278 (doi: 10.1049/iet-gtd:20080469).
    6. 6)
      • 6. Amjady, N., Nasiri-Rad, H.: ‘Solution of non-convex and non smooth economic dispatch by a new adaptive real coded genetic algorithm’, Exp. Syst. Appl., 2010, 37, (7), pp. 52375245 (doi: 10.1016/j.eswa.2009.12.084).
    7. 7)
      • 7. Lukman, D., Walshe, K., Blackburn, T.R.: ‘Loss minimisation in industrial power system operation’. Australasian Universities Power Engineering Conf. (AUPEC2000), Brisbane, Australia, 2000, pp. 1520.
    8. 8)
      • 8. Lin, W.M., Chen, S.J.: ‘Bid-based dynamic economic dispatch with an efficient interior point algorithm’, Electr. Power Energy Syst., 2002, (24), pp. 5157 (doi: 10.1016/S0142-0615(01)00007-2).
    9. 9)
      • 9. Granelli, G.P., Montagna, M.: ‘Security-constrained economic dispatch using dual quadratic programming’, Electr. Power Syst. Res., 2000, 56, (1), pp. 7180 (doi: 10.1016/S0378-7796(00)00097-3).
    10. 10)
      • 10. Lin, C.E., Viviani, G.L.: ‘Hierarchical economic dispatch for piecewise quadratic cost functions’, IEEE Trans. Power Appl. Syst., 1984, PAS-103, (6), pp. 11701175 (doi: 10.1109/TPAS.1984.318445).
    11. 11)
      • 11. Yang, H.T., Chen, S.L.: ‘Incorporating a multi-criteria decision procedure into the combined dynamic programming/production simulation algorithm for generation expansion planning’, IEEE Trans. Power Syst., 1989, 4, (1), pp. 165175 (doi: 10.1109/59.32474).
    12. 12)
      • 12. Chen, C.L., Wang, C.L.: ‘Branch-and-bound scheduling for thermal generating units’, IEEE Trans. Energy Convers., 1993, 8, (2), pp. 184189 (doi: 10.1109/60.222703).
    13. 13)
      • 13. Yang, H.T., Yang, P.C., Huang, C.L.: ‘Evolutionary programming based economic dispatch for units with non-smooth fuel cost functions’, IEEE Trans. Power Syst., 1996, 11, (1), pp. 112118 (doi: 10.1109/59.485992).
    14. 14)
      • 14. Walters, D.C., Sheble, G.B.: ‘Genetic algorithm solution of economic dispatch with valve point loading’, IEEE Trans. Power Syst., 1993, 8, (3), pp. 13251331 (doi: 10.1109/59.260861).
    15. 15)
      • 15. Chinag, C.L.: ‘Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels’, IEEE Trans. Power Syst., 2005, 20, (4), pp. 16901699 (doi: 10.1109/TPWRS.2005.857924).
    16. 16)
      • 16. Coelho, L.S., Mariani, V.C.: ‘Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 98996 (doi: 10.1109/TPWRS.2006.873410).
    17. 17)
      • 17. Chaturvedi, K.T., Pandit, M., Srivastava, L.: ‘Particle swarm optimization with crazy particles for nonconvex economic dispatch’, Appl. Soft Comput., 2009, 9, (3), pp. 962969 (doi: 10.1016/j.asoc.2008.11.012).
    18. 18)
      • 18. Wong, K.P., Fung, C.C.: ‘Simulated annealing based economic dispatch algorithm’, IEE Proc. C, 1993, 140, (6), pp. 509515.
    19. 19)
      • 19. Lin, W.M., Cheng, F.S., Tsay, M.T.: ‘An improved Tabu search for economic dispatch with multiple minima’, IEEE Trans. Power Syst., 2002, 17, (1), pp. 108112 (doi: 10.1109/59.982200).
    20. 20)
      • 20. Vanitha, M., Thanushkodi, K.: ‘An efficient technique for solving the economic dispatch problem using biogeography algorithm’, Eur. J. Sci. Res., 2011, 50, (2), pp. 165172.
    21. 21)
      • 21. Ciornei, I., Kyriakides, E.: ‘A GA – API solution for the economic dispatch of generation in power system operation’, IEEE Trans. Power Syst., 2011, 27, (1), pp. 19.
    22. 22)
      • 22. Min, K., Lee, S., Moon, Y.: ‘An economic dispatch algorithm as combinatorial optimization problems’, Int. J. Con. Aut. and Sys., 2008, 6, (4), pp. 468476.
    23. 23)
      • 23. Gaing, Z.L.: ‘Particle swarm optimization to solving the economic dispatch considering the generator constraints’, IEEE Trans. Power Syst., 2003, 18, (3), pp. 11871195 (doi: 10.1109/TPWRS.2003.814889).
    24. 24)
      • 24. Guvenc, U., Duman, S., Saracoglu, B., Özturk, A.: ‘A hybrid GA-PSO approach based on similarity for various types of economic dispatch problems’, Electronics and Electrical Engineering Journal2011, 2, (108), pp. 109114.

Related content

This is a required field
Please enter a valid email address