access icon free Voltage stability analysis of unbalanced distribution systems using backward/forward sweep load-flow analysis method with secant predictor

This study presents a new method for tracing voltage power curves in unbalanced radial distribution power systems. The proposed method starts with the base case loading conditions and leading to the maximum loading point (MLP) whereas no ill-conditioning problems were detected. The calculation is performed by first-order polynomial secant predictor and the solution is corrected using the backward/forward radial power-flow method. Adaptive stepwise control is implemented to improve the overall solution process and reduce the number of the calculated points along the traced curve. The results calculated using the developed method are for both a 33-bus radial feeder and the unbalanced IEEE 13-node and IEEE123-node feeders. The results show that the developed method accurately traces the voltage power curves up to MLP. Comprehensive analysis on unbalanced scenarios shows that load unbalance greatly affects the stability limit of the study system.

Inspec keywords: IEEE standards; polynomials; distribution networks; power system stability; adaptive control

Other keywords: maximum loading point; backward-forward sweep load-flow analysis method; ill-conditioning problems; adaptive stepwise control; first-order polynomial secant predictor; IEEE123-node feeders; MLP; base case loading conditions; secant predictor; stability limit; IEEE 13-node; voltage stability analysis; unbalanced scenarios; voltage power curves tracing; unbalanced radial distribution power systems

Subjects: Distribution networks; Algebra

References

    1. 1)
      • 25. Zhang, X.P.: ‘Continuation power flow in distribution system analysis’. Proc. IEEE Power Engineering Society PSCE, October 2006, pp. 61317.
    2. 2)
      • 31. Huang, W.-T., Yao, K.-C.: ‘New network sensitivity-based approach for real-time complex power flow calculation’, IET Proc., Gener. Transm. Distrib., 2012, 6, (2), pp. 109120 (doi: 10.1049/iet-gtd.2011.0429).
    3. 3)
      • 21. Mohn, F.W., Zambroni de Souza, A.C.: ‘On fast decoupled continuation power flows’, Electr. Power Syst. Res., 2002, 63, pp. 105111 (doi: 10.1016/S0378-7796(02)00095-0).
    4. 4)
      • 12. Nino, E.E., Castro, C.A., Silva, S.L.C.P.da., Alves, D.A.: ‘Continuation load flow using automatically determined branch megawatt losses as parameters’, IEE Proc., Gener. Transm. Distrib., 2006, 153, (3), pp. 300308 (doi: 10.1049/ip-gtd:20045153).
    5. 5)
      • 30. Bhattacharya, A., Chattopadhyay, P.K.: ‘Application of biogeography-based optimisation to solve different optimal power flow problems’, IET Proc., Gener. Transm. Distrib., 2011, 5, (1), pp. 7080 (doi: 10.1049/iet-gtd.2010.0237).
    6. 6)
      • 19. Kojima, T., Mori, H.: ‘Development of nonlinear predictor with a set of predicted points for continuation power flow’, Elect. Eng. Jpn., 2008, 163, (4), pp. 3041 (doi: 10.1002/eej.20297).
    7. 7)
      • 4. Abdel-Akher, M., Bedawy, A., Aly, M.M.: ‘Application of bifurcation analysis on active unbalanced distribution system’. IET Renewable Power Generation Conf., RPG 2011, Edinburgh, UK, 5–8 September 2011, paper p142.
    8. 8)
      • 10. Shirmohammadi, D., Semlyen, A., Luo, G.X.: ‘A compensation-based power flow method for weakly meshed distribution and transmission networks’, IEEE Trans. Power Syst., 1988, 3, (2), pp. 753762 (doi: 10.1109/59.192932).
    9. 9)
      • 3. Augugliaro, A., Dusonchet, L., Mangione, S.: ‘Voltage collapse proximity indicators for radial distribution networks’. Proc. Ninth Int. Conf. Electric Power Quality and Utilization, Barcelona, 2007, pp. 911.
    10. 10)
      • 24. Zhang, X.P., Ju, P., Handschin, E.: ‘Continuation three-phase power flow: a tool for voltage stability analysis of unbalanced three-phase power systems’, IEEE Trans. Power Syst., 2005, 20, pp. 13201329 (doi: 10.1109/TPWRS.2005.851950).
    11. 11)
      • 7. Canizares, C.A.: ‘On bifurcations, voltage collapse and load modeling’, IEEE Trans. Power Syst., 1995, 10, (1), pp. 512522 (doi: 10.1109/59.373978).
    12. 12)
      • 16. Ou, T.C.: ‘A novel unsymmetrical faults analysis for microgrid distribution systems’, Int. J. Electr. Power Energy Syst., 2012, 43, (1), pp. 10171024 (doi: 10.1016/j.ijepes.2012.05.012).
    13. 13)
      • 9. Dukpa, A., Venkatesh, B., El-Hawary, M.: ‘Application of continuation power flow method in radial distribution systems’, Electr. Power Syst. Res., 2009, 10, (11), pp. 15031510 (doi: 10.1016/j.epsr.2009.05.003).
    14. 14)
      • 1. Sakthivel, S., Mary, D., Deivarajamani, M.: ‘Reactive power planning for voltage stability limit improvement with FACTS devices in most critical contingency condition’, Eur. J. Sci. Res., 2011, 66, (3), pp. 408420.
    15. 15)
      • 28. Kersting, W.H.: ‘Radial distribution test feeders’. IEEE Power Engineering Society, Winter Meeting, 2001, vol. 2, pp. 908912, 2001, the data available at: http://www.ewh.ieee.org/soc/pes/dsacom/testfeeders.html.
    16. 16)
      • 23. Ajjarapu, V., Christy, C.: ‘The continuation power flow a tool for steady state voltage stability analysis’, IEEE Trans. Power Syst., 1992, 7, (1), pp. 416423 (doi: 10.1109/59.141737).
    17. 17)
      • 13. Dilek, M., Leon, F.de., Broadwater, R., Lee, S.: ‘A robust multiphase power flow for general distribution networks’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 7607687 (doi: 10.1109/TPWRS.2009.2036791).
    18. 18)
      • 17. Yan, R., Saha, T.K.: ‘Investigation of voltage stability for residential customers due to high photovoltaic penetrations’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 651662 (doi: 10.1109/TPWRS.2011.2180741).
    19. 19)
      • 20. Aly, M.M., Abdel-Akher, M.: ‘Voltage stability assessment for radial distribution systems with wind power penetration’. IET Renewable Power Generation Conf., RPG 2011, Edinburgh, UK, 5–8 September 2011, paper p12.
    20. 20)
      • 2. Zarate, L.A.Ll., Castro, C.A.: ‘Fast computation of security margins to voltage collapse based on sensitivity analysis’, IEE Proc., Gener. Transm. Distrib., 2006, 153, (1), pp. 3543 (doi: 10.1049/ip-gtd:20045156).
    21. 21)
      • 8. Zhao, J., Zhang, B.: ‘Reasons and countermeasures for computation failures of continuation power flow’. IEEE Power Engineering Society General Meeting, June 2006, pp. 6.
    22. 22)
      • 11. Alves, D.A., Silva, L.C.P.da., Castro, C.A., Costa da, V.F.: ‘Continuation load flow method parameterized by transmission line power losses’. Int. Conf. Power System Technology, Proc. PowerCon, 2000, vol. 2, pp. 763768.
    23. 23)
      • 29. Abdel-Akher, M., Ahmad, M.E., Mahanty, R.N., Nor, K.M.: ‘An approach to determine a pair of power-flow solutions related to the voltage stability of unbalanced three-phase networks’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 12491257 (doi: 10.1109/TPWRS.2008.926476).
    24. 24)
      • 18. Sode-Yome, A., Lee, K.Y.: ‘Applications of MATLAB symbolic and optimization toolboxes in static voltage stability in power systems’. Proc. Sixth IFAC Symp. Power Plants and Power Systems Control, 2009, pp. 374379.
    25. 25)
      • 14. Abdel-Akher, M., Mahmoud, K.: ‘Unbalanced distribution power-flow model and analysis of wind turbine generating systems’, Eur. Trans. Electr. Power, DOI: 10.1002/etep.1634, in press.
    26. 26)
      • 26. Mori, H., Seki, K.: ‘Non-linear-predictor-based continuation power flow for unbalanced distribution systems’. Proc. Transmission & Distribution Conference & Exposition: Asia and Pacific, 2009, pp. 14.
    27. 27)
      • 22. Jasni, J., Azis, N., Hizam, H., et al: ‘An efficient generalized minimized residual simulation technique for continuation power flow studies’, Asian J. Appl. Sci., 2008, 1, (2), pp. 136146 (doi: 10.3923/ajaps.2008.136.146).
    28. 28)
      • 27. Alves, D.A., Silva, L.C.P.da., Castro, C.A., Costa, V.F.da.: ‘Continuation fast decoupled power flow with secant predictor’, IEEE Trans. Power Syst., 2003, 18, (3), pp. 10781085 (doi: 10.1109/TPWRS.2003.814892).
    29. 29)
      • 15. Lin, W.M., Ou, T.C.: ‘Unbalanced distribution network fault analysis with hybrid compensation’, IET Proc., Gener. Transm. Distrib., 2011, 5, (1), pp. 92100 (doi: 10.1049/iet-gtd.2008.0627).
    30. 30)
      • 5. Kwatny, H.G., Fischl, R.F., Nwankpa, C.O.: ‘Local bifurcation in power systems: theory, computation, and application’, Proc. IEEE, 1995, 83, (11), pp. 14561483 (doi: 10.1109/5.481630).
    31. 31)
      • 6. Zhou, Y., Ajjarapu, V.: ‘A fast algorithm for identification and tracing of voltage and oscillatory stability margin boundaries’, Proc. IEEE, 2008, 93, (5), pp. 934946 (doi: 10.1109/JPROC.2005.847254).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2012.0360
Loading

Related content

content/journals/10.1049/iet-gtd.2012.0360
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading