http://iet.metastore.ingenta.com
1887

Dynamic computing paradigm for comprehensive power flow analysis

Dynamic computing paradigm for comprehensive power flow analysis

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a novel dynamic paradigm aimed at solving the power flow equations in both solvable and unsolvable region is proposed. The challenging idea is to reformulate the power flow equations into a set of ordinary differential equations, whose equilibrium points represent the power flow problem solutions. Starting from the Lyapunov theory, the authors demonstrate that this system of dynamic equations is characterised by an exponential asymptotic convergence to equilibrium points. This feature allows us to overcome the inherent limitations of the traditional iterative minimisation algorithms that can fail to converge because of the highly non-linearities of the first-order condition. Extensive simulation studies aimed at demonstrating the effectiveness of the proposed methodology are presented and discussed.

References

    1. 1)
      • 1. Xiea, N., Bompard, E., Napoli, R., Torelli, F.: ‘Widely convergent method for finding solutions of simultaneous nonlinear equations’, Electr. Power Syst. Res., 2012, 83, (1), pp. 918 (doi: 10.1016/j.epsr.2011.09.002).
    2. 2)
      • 2. Overbye, T.J.: ‘A ower flow measure for unsolvable cases’, IEEE Trans. Power Syst., 1994, 9, (3), pp. 13591365 (doi: 10.1109/59.336130).
    3. 3)
      • 3. Overbye, T.J.: ‘Computation of a practical method to restore power flow solvability’, IEEE Trans. Power Syst., 1995, 10, (1), pp. 280287 (doi: 10.1109/59.373951).
    4. 4)
      • 4. Castro, C.A., Braz, L.M.C.: ‘A new approach to polar Newton power flow using step size optimization’. Proc. 29th North American Power Symp, Laramie, WY, USA, 1997.
    5. 5)
      • 5. Braz, L.M.C., Castro, C.A., Murari, C.A.F.: ‘A critical evaluation of step size based optimization based load flow methods’, IEEE Trans. Power Syst., 2000, 15, (1), pp. 202207 (doi: 10.1109/59.852122).
    6. 6)
      • 6. Ajjarapu, V., Christy, C.: ‘The continuation power flow: A tool for steady state voltage stability analysis’, IEEE Trans. Power Syst., 1992, 7, (1), pp. 416423 (doi: 10.1109/59.141737).
    7. 7)
      • 7. Iwamoto, S., Tamura, Y.: ‘A load flow calculation method for Ill-conditioned power systems’, IEEE Trans. Power Appl. Syst., 1981, PAS-100, (4), pp. 17361743 (doi: 10.1109/TPAS.1981.316511).
    8. 8)
      • 8. Bijwe, P.R., Kelapure, S.M.: ‘Nondivergent fast power flow methods’, IEEE Trans. Power Syst., 2003, 18, (2), pp. 633638 (doi: 10.1109/TPWRS.2003.810905).
    9. 9)
      • 9. Tripathy, S.C., Prasad, G.D., Malik, O.P., Hope, G.S.: ‘Load-flow solutions for Ill-conditioned power systems by a newton-like method’, IEEE Trans. Appl. Syst., 1982, PAS-101, (10), pp. 36483657 (doi: 10.1109/TPAS.1982.317050).
    10. 10)
      • 10. Galloway, R.H., Taylor, J., Hogg, W.D., Scott, M.: ‘New approach to power system load-flow analysis in a digital computer’, Proc. IEE, 1970, 117, (1), pp. 165169.
    11. 11)
      • 11. Stott, B.: ‘Review of load-flow calculation methods’, Proc. IEEE, 1974, 62, (7), pp. 916929 (doi: 10.1109/PROC.1974.9544).
    12. 12)
      • 12. Jardim, J., Stott, B.: ‘Synthetic dynamics power flow’, IEEE Power Eng. Soc. General Meet., 2005, 1, pp. 479484.
    13. 13)
      • 13. Milano, F.: ‘Continuous Newton's method for power flow analysis’, IEEE Trans. Power Syst., 2009, 24, (1), pp. 5057 (doi: 10.1109/TPWRS.2008.2004820).
    14. 14)
      • 14. Löf, P.-A., Anderson, G., Hill, D.J.: ‘Voltage stability indices for stressed power systems’, IEEE Trans. Power Syst., 1993, 8, (1), pp. 326335 (doi: 10.1109/59.221224).
    15. 15)
      • 15. Cañizares, C.A., De Souza, A.C.Z., Quintana, V.H.: ‘Comparison of performance indices for detection of proximity to voltage collapse’, IEEE Trans. Power Syst., 1996, 11, (3), pp. 14411450 (doi: 10.1109/59.535685).
    16. 16)
      • 16. Wallach, Y.: ‘Gradient methods for load flow problems’, IEEE Trans. Appl. Syst., 1968, PAS-87, (5), pp. 13141318 (doi: 10.1109/TPAS.1968.292223).
    17. 17)
      • 17. Sasson, A.M.: ‘Nonlinear programming solutions for load-flow, minimum-loss, and economic dispatching problems’, IEEE Trans. Appl. Syst., 1969, PAS-88, (4), pp. 399409 (doi: 10.1109/TPAS.1969.292460).
    18. 18)
      • 18. Sasson, A.M., Trevino, C., Aboytes, F.: ‘Improved Newton's load flow through a minimization technique’, IEEE Trans. Appl. Syst., 1970, PAS-90, (5), pp. 19741981 (doi: 10.1109/TPAS.1971.292992).
    19. 19)
      • 19. Vaccaro, A., Cañizares, C., Villacci, D.: ‘An affine arithmetic-based methodology for reliable power flow analysis in the presence of data uncertainty’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 624632 (doi: 10.1109/TPWRS.2009.2032774).
    20. 20)
      • 20. Vaccaro, A., Villacci, D.: ‘Radial power flow tolerance analysis by interval constraint propagation’, IEEE Trans. Power Syst., 2009, 24, (1), pp. 2839 (doi: 10.1109/TPWRS.2008.2009383).
    21. 21)
      • 21. Torres, G.L., Quintana, V.H.: ‘An interior-point method for nonlinear optimal power flow using voltage rectangular coordinates’, IEEE Trans. Power Syst., 1998, 13, (4), pp. 12111218 (doi: 10.1109/59.736231).
    22. 22)
      • 22. Hiskens, I.A., Davy, R.J.: ‘Exploring the power flow solution space boundary’, IEEE Trans. Power Syst., 2001, 16, (3), pp. 389395 (doi: 10.1109/59.932273).
    23. 23)
      • 23. ‘Power systems test case archive’, available on line at http://www.ee.washington.edu/research/pstca.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2012.0350
Loading

Related content

content/journals/10.1049/iet-gtd.2012.0350
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address