Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Research on lightning performance of AC/DC hybrid transmission lines on the same tower

Rapid expansion of power system and the limitation of transmission corridor resources have indispensably promoted the development of AC/DC hybrid transmission lines on the same tower under special situations, especially for ultra-high voltage systems being established in China. A hybrid tower model incorporating a double-circuit AC transmission and a bipolar DC transmission is proposed in the study. The lightning performance of AC/DC hybrid transmission lines is investigated based on electro-magnetic transient program (EMTP) and leader progression model, taking into account the operating voltage of transmission lines as well as the competition of multiple upward leaders. The impact of tower's height, footing resistance, arrangements of ground wires and ground obliquity on lightning protection performance is also analysed. In accordance with the ± 800 kV bipolar DC and the 500 kV double-circuit AC transmission lines on the same tower, the results show that the back flashover and the shielding failure is relatively serious for a 500 kV AC transmission line, which should be paid more attention to. Finally, several methods that may be used to improve lightning protection performance of the AC/DC hybrid transmission lines are presented, such as reducing the tower's height, using a negative protection angle and installing additional ground wires.

References

    1. 1)
      • 3. Maruvada, P.S., Drogi, S.: ‘Filed and ion interactions of hybrid AC/DC transmission lines’, IEEE Trans. Power Deliv., 1988, 3, (3), pp. 11651172.
    2. 2)
      • 15. Hara, T., Yamamoto, O.: ‘Modeling of a transmission tower for lightning surge analysis’, IEE Proc. Trans. Distrib., 1996, 143, (3), pp. 283289.
    3. 3)
      • 23. Takami, J.U.N., Okabe, S.: ‘Characteristics of direct lightning strokes to phase conductors of UHV transmission lines’, IEEE Trans. Power Deliv., 2007, 22, (1), pp. 537546.
    4. 4)
      • 19. Zeng, R., Geng, Y., Li, Y.: ‘Lightning shielding failure model of transmission line based on leader progression model’, High Volt. Eng., 2008, 34, (10), pp. 20412046.
    5. 5)
      • 7. Kumar, U., Bokka, P.K., Padhii, J.: ‘A macroscopic inception criterion for the upward leaders of natural lightning’, IEEE Trans. Power Deliv., 2005, 20, (2), pp. 904911.
    6. 6)
      • 20. Bengang, W.E.I., Zhengcai, F.U.: ‘Analysis of the leader inception process in line-plane gap under lightning strike’, J. Shanghaijiaotong Univ., 2009, 43, (8), pp. 12061210.
    7. 7)
      • 14. Haiyan, Y., Zhengcai, F., Bengang, W.: ‘Analysis of lightning shielding failure proof level of UHV transmission lines considering corona influences’, Proc. CSEE, 1995, 29, (25), pp. 111117.
    8. 8)
      • 17. Imece, A.F., Durbak, D.W., Elahi, H.: ‘Modeling guidelines for fast front transients’, IEEE Trans. Power Deliv., 1996, 11, (1), pp. 493506.
    9. 9)
      • 10. Wei, S., Qingmin, L., Xinchang, L.: ‘Research on the competition of upward leaders issued from the transmission line’. Asia-Pacific Int. Conf. Lightning, 2011, vol. 11, pp. 595598.
    10. 10)
      • 9. Cooray, V., Fernando, M., Arevalo, L., Becerra, M.: ‘Interaction of multiple upward connecting leaders initiated from a grounded structure simulated using a self consistent leader inception and propagation model’. Proc. 30th Int. Conf. on Lightning Protection, 2010, vol. 9.
    11. 11)
      • 11. DL/T 620-1997: ‘Overvoltage protection and insulation coordination of AC electric installation’(China Electric Power Press, 1997).
    12. 12)
      • 5. Verdolin, R., Gole, A.M., Kuffel, E.: ‘Induced overvoltages on an ac-dc hybrid transmission system’, IEEE Trans. Power Deliv., 1995, 10, (3), pp. 15141524.
    13. 13)
      • 12. Dong, G.E., Shuchun, D.U., Cuixia, Z.: ‘Lightning protection of AC 1000 kV UHV transmission line’, Electr. Power, 2006, 39, (10), pp. 2428.
    14. 14)
      • 2. Nakra, H.L., Bui, L.X., Iyoda, I.: ‘System consideratin in converting one circuit of a double circuit ac line to dc’, IEEE Trans. Power Deliv., 1984, 103, (10), pp. 30963103.
    15. 15)
      • 6. Xinnian, L., Weiping, J., Tao, L.: ‘Influence of same-tower AC/DC hybrid transmission lines on DC bias of converter transformer’, Autom. Electr. Power Syst., 2011, 35, (11), pp. 8792.
    16. 16)
      • 18. Cooray, V., Rakov, V., Theethayi, N.: ‘The lightning strike distance – revisited’, J. Electrost., 2007, 65, (5), pp. 296306.
    17. 17)
      • 8. Arevalo, L., Cooray, V.: ‘Influence of multiple upward connecting leaders initiated from the same structure on the lightning attachment process’. Int. Symp. Lightning Protection (SIPDA), 2009, 11, pp. 221226.
    18. 18)
      • 13. Guiller, J.F., Poloujadoff, M., Rioul, M.: ‘Damping model of traveling waves by corona effect along extra high voltage three phase lines’, IEEE Trans. Power Deliv., 1995, 10, (4), pp. 18511861.
    19. 19)
      • 21. Petrov, N.I., Waters, R.T.: ‘Determination of striking distance of lightning to earthed structures’, Proc. Math. Phys. Sci., 1995, 450, (1940), pp. 589601.
    20. 20)
      • 22. Hengxin, H.E., Junjia, H.E., Guanjun, Q.: ‘Lightning shielding analysis model of UHVAC overhead transmission line’, High Volt. Eng., 2010, 36, (1), pp. 196204.
    21. 21)
      • 16. IEC60071-2 Insulation Co-ordination, Part2: Application Guide, 1996.
    22. 22)
      • 1. Matele, M.L., Clerici, A., Valtorta, G.: ‘Power upgrading by converting AC lines to DCProc. Third AFRICON Conf., 1992, 9, pp. 474478.
    23. 23)
      • 4. Woodford, D.: ‘Secondary arc effects in AC/DC hybrid transmission’, IEEE Trans. Power Deliv., 1993, 8, (2), pp. 704711.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2012.0308
Loading

Related content

content/journals/10.1049/iet-gtd.2012.0308
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address