A hybrid method and its applications to analyse the low frequency oscillations in the interconnected power system

A hybrid method and its applications to analyse the low frequency oscillations in the interconnected power system

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a hybrid method is proposed to calculate oscillatory parameters and the approximate mode shapes (AMSs) of low frequency oscillations based on the measured signals from wide area measurement system. This method not only overcomes the limitations of the single algorithm, but also integrates the advantages of the used techniques. First of all, two-level decomposition is presented to minish the scale-mixing influence in the empirical mode decomposition. Then, the Gibbs phenomenon of traditional Hilbert transform (HT) is reduced by using the normalised HT. Next, the relative phase calculation algorithm is introduced to realise the generator grouping and mode shape identification. Finally, the AMSs of dominant oscillation at different time ranges and frequency distributions are determined. The EPRI–36 bus simulation model and actual measured signals are used to evaluate the performances and validities of the proposed hybrid method.


    1. 1)
      • 1. Yu, Y.X., Li, P.: ‘The impact of weak interconnection of bulk power grids to damping and dynamic stability of power system’, Proc. CSEE, 2005, 25, (11), pp. 710.
    2. 2)
      • 2. Tsai, S.S., Zhong, Z., Zuo, J., et al: ‘Analysis of wide-area frequency measurement of bulk power systems’. IEEE Power & Energy Society General Meeting, Montreal, Quebec, Canada, 2006.
    3. 3)
      • 3. Lee, K.C., Poon, K.P.: ‘Analysis of power system dynamic oscillations with beat phenomenon by Fourier transformation’, IEEE Trans. Power Syst., 1990, 5, (1), pp. 148153 (doi: 10.1109/59.49099).
    4. 4)
      • 4. Trudnowski, D., Johnson, J., Hauer, J.: ‘Making prony analysis more accurate using multiple signals’, IEEE Trans. Power Syst, 1999, 14, (1), pp. 226231 (doi: 10.1109/59.744537).
    5. 5)
      • 5. Messina, A.R.: ‘Inter-area oscillations in power systems: a non-linear and non-stationary perspective’ (Springer, New York, 2009).
    6. 6)
      • 6. Laila, D.S., Messina, A.R., Pal, B.C.: ‘A refined Hilbert-Huang transform with applications to inter-area oscillation monitoring’, IEEE Trans. Power Syst., 2009, 24, (2), pp. 610619 (doi: 10.1109/TPWRS.2009.2016478).
    7. 7)
      • 7. Rueda, J.L., Juarez, C.A., Erlich, I.: ‘Wavelet-based analysis of power system low frequency electromechanical oscillations’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 17331743 (doi: 10.1109/TPWRS.2010.2104164).
    8. 8)
      • 8. Li, X., Gong, Q.W., Jia, J.J.: ‘A detection method for low frequency oscillation dominant modes based on atomic decomposition energy entropy’, Proc. CSEE, 2012, 32, (1), pp. 131139.
    9. 9)
      • 9. Tripathy, P., Srivastave, S.C., Singh, S.N.: ‘A modified TLS-ESPRIT-based method for low frequency mode identification in power system utilizing synchrophasor measurements’, IEEE Trans. Power Syst., 2011, 26, (2), pp. 719721 (doi: 10.1109/TPWRS.2010.2055901).
    10. 10)
      • 10. Wang, H., Su, X.L.: ‘Generation unit correlativity-based prony analysis on multi-signal classification of low-frequency oscillation’, Power Syst. Technol., 2011, 35, (6), pp. 128133.
    11. 11)
      • 11. Messina, A.R., Vittal, V.: ‘Extraction of dynamic patterns from wide-area measurements using empirical orthogonal functions’, IEEE Trans. Power Syst., 2007, 22, (2), pp. 682692 (doi: 10.1109/TPWRS.2007.895157).
    12. 12)
      • 12. Trudnowski, D.J.: ‘Estimating electromechanical mode shape from synchro-phasor measurements’, IEEE Trans. Power Syst., 2008, 23, (5), pp. 11881195 (doi: 10.1109/TPWRS.2008.922226).
    13. 13)
      • 13. Cai, G.W., Yang, D.Y., Zhang, J.F., et al: ‘Mode identification of power system low frequency oscillation based on measured signal’, Power Syst. Technol., 2011, 35, (1), pp. 5965.
    14. 14)
      • 14. Wang, Y.J., Yu, J.L.: ‘Matrix pencil method of oscillation modes identification in power systems’, Proc. CSEE, 2007, 27, (19), pp. 1317.
    15. 15)
      • 15. Korba, P., Larsson, M., Rehtanz, C.: ‘Detection of oscillations in power systems using Kalman filtering techniques’. Proc. 2003 IEEE Conf. Control Application, 2003, vol. 1, pp. 183188.
    16. 16)
      • 16. Power System Analysis Software Package (PSASP 7.0). Available at
    17. 17)
      • 17. Babnik, T., Gabrijel, U., Mahkovec, B., et al: ‘Wide area measurement system in action’. 2007 IEEE Lausanne Power Technology, Lausanne, Switzerland, 2007.
    18. 18)
      • 18. Huang, N.E., Shen, Z., Long, S.R., et al: ‘The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis’. Proc. R. Soc. London, 1998, vol. 454, pp. 903995.
    19. 19)
      • 19. Huang, N.E., Wu, Z.H., Long, S.R., et al: ‘On instantaneous frequency’, Adv. Adapt. Data Anal., 2009, 1, (2), pp. 177229 (doi: 10.1142/S1793536909000096).
    20. 20)
      • 20. Yang, D.C., Rehtanz, C., Li, Y.: ‘Analysis of low frequency oscillations using improved Hilbert-Huang transform’. Int. Conf. Power System Technology, HangZhou, China, October 2010.
    21. 21)
      • 21. Rogers, G.: ‘Power system oscillations’ (Kluwer, Norwell, MA, 2000).
    22. 22)
      • 22. Duan, G., Lin, J.J., Wu, J.T.: ‘Analysis method of node contribution factor of low frequency oscillation based on wide area measurement information’, CN101408577A, 2009-4-15.

Related content

This is a required field
Please enter a valid email address