access icon free Steady-state security assessment method based on distance to security region boundaries

Steady-state security region (SSR) provides a region-wise approach to assess the steady-state security of power systems. Based on the SSR model, we introduce the concept of ‘steady-state security distance’ (SSD) to provide exact ‘quantitative analysis’ on the scale of security margins for system operators. Then, mathematical models of SSD are formulated. On this basis, implementation of SSD is discussed towards various uncertainties within the power system operation. As the calculation of SSD is in essence a large-scale non-linear optimisation process, it requires very long computation time, and thus could not be utilised in practical application. In order to enhance the efficiency of computation, a novel algorithm is proposed, which decomposes the complex optimisation process into two steps: active SSR boundary identification and partial constrained solution. The proposed algorithm remarkably cuts the scale of the optimisation model as well as the number of calculations, thus significantly reduces the computation time to meet requirements of assessment towards day ahead and hours ahead generation schedules. In the end, an IEEE-30 bus case and a practical case on a provincial power system are both studied to testify the effectiveness of the proposed model and algorithm.

Inspec keywords: power system security; nonlinear programming; power generation scheduling

Other keywords: steady state security assessment method; security region boundaries; large scale nonlinear optimisation; SSR boundary identification; steady state security region; day ahead generation schedules; complex optimisation; steady state security distance; security margins; partial constrained solution; IEEE-30 bus case; provincial power system; SSD; hours ahead generation schedules

Subjects: Power system control; Control of electric power systems; Optimisation techniques; Optimisation techniques

References

    1. 1)
      • 9. Saric, A.T., Stankovic, A.M.: ‘Applications of ellipsoidal approximations to polyhedral sets in power system optimization’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 956965 (doi: 10.1109/TPWRS.2008.926435).
    2. 2)
      • 6. Liu, C.-C.: ‘A new method for the construction of maximal steady-state security regions of power systems’, IEEE Trans. Power Syst., 1986, 1, (4), pp. 1927 (doi: 10.1109/TPWRS.1986.4335009).
    3. 3)
      • 21. Athay, T., Podmore, R., Virmani, S.: ‘A practical method for the direct analysis of transient stability’, IEEE Trans. Power Appar. Syst., 1979, PAS-98, (2), pp. 573584 (doi: 10.1109/TPAS.1979.319407).
    4. 4)
      • 11. Fisch, R., Ejebe, F.C., DeMaio, J.A.: ‘Identification of power system steady-state security regions under load uncertainty’. Paper A76 495–2, IEEE Summer Power Meeting, 1976.
    5. 5)
      • 1. Wu, F.F., Kumagai, S.: ‘Steady-state security regions of power systems’, IEEE Trans. Circuits Syst., 1982, CAS-29, (11), pp. 703711 (doi: 10.1109/TCS.1982.1085091).
    6. 6)
      • 20. El-Kady, M.A., Al-Ammar, E.A.: ‘Framework for identification of power system operating security regions’. Proc. Third Int. Conf. NSS, Gold Coast, QLD, 2009, pp. 415419.
    7. 7)
      • 19. Phadke, A.R., Fozdar, M., Niazi, K.R.: ‘Determination of worst case loading margin using Genetic Algorithm’. Proc. Third Int. Conf. Power Syst., Kharagpur, India, 2009, pp. 16.
    8. 8)
      • 10. Yu, Y.X.: ‘Security region of bulk power system’. Proc. Int. Conf. Power Syst. Technol., Kunming, China, 2002, vol. 1, pp. 1317.
    9. 9)
      • 5. Dersin, P., Levis, A.H.: ‘Feasibility sets for steady-state loads in electric power networks’, IEEE Trans. Power Appar. Syst., 1982, PAS-101, (1), pp. 6070 (doi: 10.1109/TPAS.1982.317241).
    10. 10)
      • 17. Alvarado, F., Dobson, I., Hu, Y.: ‘Computation of closest bifurcations in power systems’, IEEE Trans. Power Syst., 1994, 2, (9), pp. 918928 (doi: 10.1109/59.317655).
    11. 11)
      • 24. Alsac, O., Scott, B.: ‘Optimal load flow with steady-state security’, IEEE Trans. Power Appar. Syst., 1974, 93, (3), pp. 745751 (doi: 10.1109/TPAS.1974.293972).
    12. 12)
      • 12. Sun, H.B., Yu, D.C., Xie, Y.S.: ‘Flexible steady-state security region of power system with uncertain load demand and soft security limits’. IEEE PES Summer Meeting, Seattle, Washington, 2000.
    13. 13)
      • 2. Hnyilicza, E., Lee, S.T., Schweppe, F.C.: ‘Steady-state security regions: set-theoretic approach’. Proc. PICA, New Orleans, Louisiana, 1975, pp. 347355.
    14. 14)
      • 4. Banakar, M.H., Galiana, F.D.: ‘Power system security corridors concept and computation’, IEEE Trans. Power Appar. Syst., 1981, 100, (11), pp. 45244532 (doi: 10.1109/TPAS.1981.316831).
    15. 15)
      • 3. Wu, F.F., Tsai, Y.-K.: ‘Probabilistic dynamic security assessment of power systems-I: basic model’, IEEE Trans. Circuits Syst., 1983, CAS-30, (3), pp. 143159.
    16. 16)
      • 13. Zhu, J.Z.: ‘Optimal power system steady-state security regions with fuzzy constraints’. Proc. IEEE PES Winter Meeting, New York, 2002, vol. 2, pp. 10951099.
    17. 17)
      • 8. Yu, Y.X., Feng, F.: ‘Active power steady-state security region of power system’, Science in China: Series A (China), 1990, 33, (12), pp. 14881500.
    18. 18)
      • 14. Zeng, Y., Zhang, P., Wang, M.H., Jia, H.J., Yu, Y.X., Lee, S.T.: ‘Development of a new tool for dynamic security assessment using dynamic security region’. Proc. Int. Conf. Power Syst. Technol., Chongqing, China, 2006, pp. 15.
    19. 19)
      • 23. Wang, Y., Xia, Q., Kang, C.Q.: ‘Identification of the active integer variables in security constrained unit commitment’, Proc. CSEE (China), 2010, 30, (13), pp. 234240 (in Chinese).
    20. 20)
      • 16. Dobson, I., Lu, L.: ‘Using an iterative method to compute a closest saddle node bifurcation in the load power parameter space of an electric power system’. Bulk Power System Voltage Phenomena, Voltage Stability and Security NSF Workshop, 1991.
    21. 21)
      • 18. Zarate, L., Ll, A., Castro, C.A.: ‘Fast method for computing power system security margins to voltage collapse’. IEE Proc. C, Gener. Transm. Distrib., 2004, vol. 151, pp. 1926.
    22. 22)
      • 22. Overbye, T.J.: ‘A power flow measure for unsolvable cases’, IEEE Trans. Power Syst., 1994, 9, (3), pp. 13591365 (doi: 10.1109/59.336130).
    23. 23)
      • 15. Alvarado, F., Hu, Y., Ray, D., Stevenson, R., Cashman, E.: ‘Engineering foundations for the determination of security costs’, IEEE Trans. Power Syst., 1991, 6, (3), pp. 11751182 (doi: 10.1109/59.119263).
    24. 24)
      • 7. Zhu, J.Z., Fan, R.Q., Xu, G.Y., Chang, C.S.: ‘Construction of maximal steady-state security regions of power systems using optimization method’, Electr. Power Syst. Res., 1997, 44, (2), pp. 101105 (doi: 10.1016/S0378-7796(97)01188-7).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2012.0288
Loading

Related content

content/journals/10.1049/iet-gtd.2012.0288
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading