access icon free Maximum loadability of droop regulated microgrids – formulation and analysis

This study extends the methodologies presented in other study concerned with the modelling and stability analysis of autonomous microgrids. It elaborates on a continuation method for finding the equilibria states through the entire loading range of an autonomous microgrid. The continuation method is based on the conventional continuation power flow (CPF) employed in the analysis of large power systems. However, the dissimilarities between conventional, simplified models of large power systems employed in CPF and those of detailed dynamics employed in microgrids make it necessary to reinterpret the CPF methodology. The methodology followed employs modelling procedures of microgrids previously published so as to build the Jacobians required by the predictor step. The procedure is quite expeditious, speeding up the solutions. The study also discusses revisions conducted on the CPF to warrant convergence of the corrector step to the particular case of islanded microgrids.

Inspec keywords: control system analysis; load flow; matrix algebra; Jacobian matrices; distributed power generation; power system stability

Other keywords: predictor step; islanded microgrid; droop regulated microgrid; maximum loadability; autonomous microgrid; Jacobian method; stability analysis; conventional continuation power flow

Subjects: Control of electric power systems; Power system control; Distributed power generation; Stability in control theory; Control system analysis and synthesis methods; Linear algebra (numerical analysis); Linear algebra (numerical analysis)

References

    1. 1)
      • 11. Ahn, S.J., Park, J.W., Chung, I.Y., Moon, S.I., Kang, S.H., Nam, S.R.: ‘Power-sharing method of multiple distributed generators considering control modes and configurations of a microgrid’, IEEE Trans. Power Del., 2010, 25, (3), pp. 20072016.
    2. 2)
      • 8. Ajjarapu, V., Christy, C.: ‘The continuation power flow: a tool for steady state voltage stability analysis’, IEEE Trans. Power Syst., 1992, 7, (1), pp. 416423.
    3. 3)
      • 17. Diaz, G., Gonzalez-Moran, C.: ‘Fischer-Burmeister-based method for calculating equilibrium points of droop-regulated microgrids’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 959967.
    4. 4)
      • 18. Hiskens, I.A., Davy, R.J.: ‘Exploring the power flow solution space boundary’, IEEE Trans. Power Syst., 2001, 16, (3), pp. 389395.
    5. 5)
      • 2. Katiraei, F., Iravani, M.R., Lehn, P.W.: ‘Small-signal dynamic model of a micro-grid including conventional and electronically interfaced distributed resources’, IET Gener. Transm. Distrib., 2007, 1, (3), pp. 369378.
    6. 6)
      • 6. Diaz, G., Gonzalez-Moran, C., Gomez-Aleixandre, J., Diez, A.: ‘Scheduling of droop coefficients for frequency and voltage regulation in isolated microgrids’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 489496.
    7. 7)
      • 19. Costa, V.Md., Guedes, M.R., Rosa, A.LdS., Cantarino, M.: ‘A new modeling of loading margin and its sensitivities using rectangular voltage coordinates in voltage stability analysis’, Int. J. Electr. Power  Energy Syst., 2010, 32, (4), pp. 290298.
    8. 8)
      • 4. Diaz, G., Gonzalez-Moran, C., Gomez-Aleixandre, J., Diez, A.: ‘Complex-valued state matrices for simple representation of large autonomous microgrids supplied by pq and vf generation’, IEEE Trans. Power Syst., 2009, 24, (4), pp. 17201730.
    9. 9)
      • 16. Barklund, E., Pogaku, N., Prodanovic, M., Hernandez-Aramburo, C., Green, T.C.: ‘Energy management in autonomous microgrid using stability-constrained droop control of inverters’, IEEE Trans. Power Electron., 2008, 23, (5), pp. 23462352.
    10. 10)
      • 9. Seydel, R.: ‘From equilibrium to chaos: practical bifurcation and stability analysis’ (Elsevier, New York, 1988).
    11. 11)
      • 5. Diaz, G., Gonzalez-Moran, C., Gomez-Aleixandre, J., Diez, A.: ‘Composite loads in stand-alone inverter-based microgrids–modeling procedure and effects on load margin’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 894905.
    12. 12)
      • 3. Pogaku, N., Prodanovic, M., Green, T.C.: ‘Modeling, analysis and testing of autonomous operation of an inverter-based microgrid’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 613625.
    13. 13)
      • 20. Castro, C.A.: ‘Improved method for the calculation of power systems low voltage solutions’, Int. J. Electr. Power  Energy Syst., 2002, 24, (6), pp. 503513.
    14. 14)
      • 10. Hsiao-Dong, C., Flueck, A.J., Shah, K.S., Balu, N.: ‘CPFLOW: a practical tool for tracing power system steady-state stationary behavior due to load and generation variations’, IEEE Trans. Power Syst., 1995, 10, (2), pp. 623634.
    15. 15)
      • 7. Stott, B.: ‘Power system dynamic response calculations’, Proc. IEEE, 1979, 67, (2), pp. 219241.
    16. 16)
      • 14. Parlak, K.S., Özdemir, M., Aydemir, M.T.: ‘Active and reactive power sharing and frequency restoration in a distributed power system consisting of two UPS units’, Int. J. Electr. Power  Energy Syst., 2009, 31, (5), pp. 220226.
    17. 17)
      • 1. Katiraei, F., Iravani, M.R.: ‘Power management strategies for a microgrid with multiple distributed generation units’, IEEE Trans. Power Syst., 2006, 21, (4), pp. 18211831.
    18. 18)
      • 13. Yun Wei, L., Ching-Nan, K.: ‘An Accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low-voltage multibus microgrid’, IEEE Trans. Power Electron., 2009, 24, (12), pp. 29772988.
    19. 19)
      • 21. Il-Yop, C., Wenxin, L., Cartes, D.A., Collins, E.G., Seung-Il, M.: ‘Control methods of inverter-interfaced distributed generators in a microgrid system’, IEEE Trans. Ind. Appl., 2010, 46, (3), pp. 10781088.
    20. 20)
      • 12. Hassan, N., Reza, I.: ‘Steady-state model and power flow analysis of electronically-coupled distributed resource units’, IEEE Trans. Power Del., 2007, 22, (1), pp. 721728.
    21. 21)
      • 15. Mohamed, Y., El-Saadany, E.F.: ‘Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids’, IEEE Trans. Power Electron., 2008, 23, (6), pp. 28062816.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2012.0252
Loading

Related content

content/journals/10.1049/iet-gtd.2012.0252
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading