http://iet.metastore.ingenta.com
1887

Payment cost minimisation auction for deregulated electricity market using mixed-integer linear programming approach

Payment cost minimisation auction for deregulated electricity market using mixed-integer linear programming approach

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In deregulated electricity markets, currently, most independent system operators adopt the offer cost minimisation (OCM) auction, and pay-as-market clearing price (MCP) mechanism is used as settlement rule to determine the amount of payments. In such a structure, auction mechanism and settlement rule are not completely compatible because minimised costs differ from payment costs. In this regard, payment cost minimisation (PCM) mechanism is an alternative option as it minimises the total payment cost directly. Although, there exist numerous efficient solution methods for solving the OCM problem, the solution methods for solving PCM problem are very restricted and deficient. As the objective of study, the mixed-integer linear programming (MILP) formulation for solving the PCM problem is presented. Based on several case studies, the effectiveness of the MILP method for solving PCM problem, in comparison with the only acceptable existing method, is illustrated. Additionally, a novel solution methodology is presented for solving MILP formulation of PCM problems. Further, in this study, exponential start up cost curves are utilised instead of single block start up cost functions, as considered in previous studies. In addition, the effects of the shape of load profile on the performance of OCM mechanism, in comparison with PCM, are analysed.

References

    1. 1)
      • 1. Jacobs, J.M.: ‘Artificial power networks and unintended consequences’, IEEE Trans. Power Syst., 1997, 12, (2), pp. 968972 (doi: 10.1109/59.589794).
    2. 2)
      • 2. Hao, S., Angelidis, G.A., Singh, H., Papalexopoulos, A.D.: ‘Consumer payment minimization in power pool auctions’, IEEE Trans. Power Syst., 1998, 13, (3), pp. 986991 (doi: 10.1109/59.709087).
    3. 3)
      • 3. Alonso, J., Trias, A., Gaitan, V., Alba, J.J.: ‘Thermal plant bids and market clearing in an electricity pool: minimization of costs vs. minimization of consumer payments’, IEEE Trans. Power Syst., 1999, 14, (4), pp. 13271334 (doi: 10.1109/59.801892).
    4. 4)
      • 4. Yan, J.H., Stern, G.A.: ‘Simultaneous optimal auction and unit commitment for deregulated electricity markets’, The Electricity Journal, 2002, 15, (9), pp. 7280 (doi: 10.1016/S1040-6190(02)00380-9).
    5. 5)
      • 5. Vazquez, C., Rivier, M., Perez-Arriaga, I.J.: ‘Production cost minimization versus consumer payment minimization in electricity pools’, IEEE Trans. Power Syst., 2002, 17, (1), pp. 119127 (doi: 10.1109/59.982202).
    6. 6)
      • 6. Mendes, D.P.: ‘Resource scheduling and pricing in a centralised energy market’. Proc. 14th Power System Computation Conf., Seville, Spain, June 2002, pp. 17.
    7. 7)
      • 7. Hao, S., Zhuang, F.: ‘New models for integrated short-term forward electricity markets’, IEEE Trans. Power Syst., 2003, 18, (2), pp. 478485 (doi: 10.1109/TPWRS.2003.810686).
    8. 8)
      • 8. Luh, P.B., Blankson, W.E., Chen, Y., et al: ‘Payment cost minimization auction for deregulated electricity markets using surrogate optimization’, IEEE Trans. Power Syst., 2006, 1, (2), pp. 568578 (doi: 10.1109/TPWRS.2006.873104).
    9. 9)
      • 9. Lee, F.N.: ‘Short-term thermal unit commitment – a new method’, IEEE Trans. Power Syst., 1988, 3, (2), pp. 421428 (doi: 10.1109/59.192892).
    10. 10)
      • 10. Li, C., Johnson, R.B., Svoboda, A.J.: ‘A new unit commitment method’, IEEE Trans. Power Syst., 1997, 12, (1), pp. 113119 (doi: 10.1109/59.574930).
    11. 11)
      • 11. Senjyu, T., Shimabukuro, K., Uezato, K., Funabashi, T.: ‘A fast technique for unit commitment problem by extended priority list’, IEEE Trans. Power Syst., 2003, 18, (2), pp. 882888 (doi: 10.1109/TPWRS.2003.811000).
    12. 12)
      • 12. Fesanghary, M., Ardehali, M.M.: ‘A novel meta-heuristic optimization methodology for solving various types of economic dispatch problem’, J. Energy, 2009, 34, (6), pp. 757766 (doi: 10.1016/j.energy.2009.02.007).
    13. 13)
      • 13. Snyder, W.L., Powell, H.D., Rayburn, J.C.: ‘Dynamic-programming approach to unit commitment’, IEEE Trans. Power Syst., 1987, 2, (2), pp. 339350 (doi: 10.1109/TPWRS.1987.4335130).
    14. 14)
      • 14. Hobbs, W.J., Hermon, G., Warner, S., Sheblé, G.B.: ‘An enhanced dynamic programming approach for unit commitment’, IEEE Trans. Power Syst., 1988, 3, (3), pp. 12011205 (doi: 10.1109/59.14582).
    15. 15)
      • 15. Ouyang, Z., Shahidehpour, S.M.: ‘An intelligent dynamic-programming for unit commitment application’, IEEE Trans. Power Syst., 1991, 6, (3), pp. 12031209 (doi: 10.1109/59.119267).
    16. 16)
      • 16. Zhuang, F., Galiana, F.D.: ‘Unit commitment by simulated annealing’, IEEE Trans. Power Syst., 1990, 5, (1), pp. 311318 (doi: 10.1109/59.49122).
    17. 17)
      • 17. Mantawy, A.H., Abdel-Magid, Y.L., Selim, S.Z.: ‘A simulated annealing algorithm for unit commitment’, IEEE Trans. Power Syst., 1998, 13, (1), pp. 197204 (doi: 10.1109/59.651636).
    18. 18)
      • 18. Purushothama, G.K., Jenkins, L.: ‘Simulated annealing with local search – a hybrid algorithm for unit commitment’, IEEE Trans. Power Syst., 2003, 18, (1), pp. 273278 (doi: 10.1109/TPWRS.2002.807069).
    19. 19)
      • 19. Kazarlis, S.A., Bakirtzis, A.G., Petridis, V.: ‘A genetic algorithm solution to the unit commitment problem’, IEEE Trans. Power Syst., 1996, 11, (1), pp. 8392 (doi: 10.1109/59.485989).
    20. 20)
      • 20. Juste, K.A., Kita, H., Tanaka, E., Hasegawa, J.: ‘An evolutionary programming solution to the unit commitment problem’, IEEE Trans. Power Syst., 1999, 14, (4), pp. 14521459 (doi: 10.1109/59.801925).
    21. 21)
      • 21. Arroyo, J.M., Conejo, A.J.: ‘A parallel repair genetic algorithm to solve the unit commitment problem’, IEEE Trans. Power Syst., 2002, 17, (4), pp. 12161224 (doi: 10.1109/TPWRS.2002.804953).
    22. 22)
      • 22. Rajan, C.C.A., Mohan, M.R.: ‘An evolutionary programming based tabu search method for solving the unit commitment problem’, IEEE Trans. Power Syst., 2004, 19, (1), pp. 577585 (doi: 10.1109/TPWRS.2003.821472).
    23. 23)
      • 23. Damousis, I.G., Bakirtzis, A.G., Dokopoulos, P.S.: ‘A solution to the unit commitment problem using integer-coded genetic algorithm’, IEEE Trans. Power Syst., 2004, 19, (20), pp. 11651172 (doi: 10.1109/TPWRS.2003.821625).
    24. 24)
      • 24. Merlin, A., Sandrin, P.: ‘A new method for unit commitment at Electricité de France’, IEEE Trans. Power Appl. Syst., 1983, PAS-102, (5), pp. 12181225 (doi: 10.1109/TPAS.1983.318063).
    25. 25)
      • 25. Zhuang, F., Galiana, F.D.: ‘Towards a more rigorous and practical unit commitment by Lagrange relaxation’, IEEE Trans. Power Syst., 1988, 3, (2), pp. 763773 (doi: 10.1109/59.192933).
    26. 26)
      • 26. Wang, C., Shahidehpour, S.M.: ‘Ramp-rate limits in unit commitment and economic dispatch incorporating rotor fatigue effect’, IEEE Trans. Power Syst., 1994, 9, (3), pp. 15391545 (doi: 10.1109/59.336106).
    27. 27)
      • 27. Wang, C., Shahidehpour, S.M.: ‘Optimal generation scheduling with ramping costs’, IEEE Trans. Power Syst., 1995, 10, (1), pp. 6067 (doi: 10.1109/59.373928).
    28. 28)
      • 28. Svoboda, A.J., Tseng, C.L., Li, C.A., Johnson, R.B.: ‘Short-term resource scheduling with ramp constraints’, IEEE Trans. Power Syst., 1997, 12, (1), pp. 7783 (doi: 10.1109/59.574926).
    29. 29)
      • 29. Lai, S.Y., Baldick, R.: ‘Unit commitment with ramp multipliers’, IEEE Trans. Power Syst., 1999, 14, (1), pp. 5864 (doi: 10.1109/59.744484).
    30. 30)
      • 30. Ongsakul, W., Petcharaks, N.: ‘Unit commitment by enhanced adaptive Lagrangian relaxation’, IEEE Trans. Power Syst., 2004, 19, (1), pp. 620628 (doi: 10.1109/TPWRS.2003.820707).
    31. 31)
      • 31. Dillon, T.S., Edwin, K.W., Kochs, H.D., Tand, R.J.: ‘Integer programming approach to the problem of optimal unit commitment with probabilistic reserve determination’, IEEE Trans. Power Appl. Syst., 1978, PAS-97, (6), pp. 21542166 (doi: 10.1109/TPAS.1978.354719).
    32. 32)
      • 32. Medina, J., Quintana, V.H., Conejo, A.J.: ‘A clipping-off interior point technique for medium-term hydro-thermal coordination’, IEEE Trans. Power Syst., 1999, 14, (1), pp. 266273 (doi: 10.1109/59.744542).
    33. 33)
      • 33. Carrión, M., Arroyo, J.M.: ‘A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem’, IEEE Trans. Power Syst., 2006, 21, (3), pp. 13711378 (doi: 10.1109/TPWRS.2006.876672).
    34. 34)
      • 34. Nemhauser, G.L., Wolsey, L.A.: ‘Integer and combinatorial optimization’ (Wiley-Interscience, New York, 1999).
    35. 35)
      • 35. Bixby, R.E., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: ‘MIP: theory and practice closing the gap’, Powell, M.J.D., Scholtes, S. (Eds.): ‘System Modeling and Optimization: Methods, Theory and Applications’ (Kluwer, Norwell, MA, 2000), pp. 1950.
    36. 36)
      • 36. The GAMS Development Corporation Website, http://www.gams.com, accessed 2011.
    37. 37)
      • 37. Han, X., Luh, P.B., Yan, J.H., Stern, G.A.: ‘Payment cost minimization with transmission capacity constraints and losses using the objective switching method’. Proc. IEEE Power and Energy Society General Meeting, 2010.
    38. 38)
      • 38. Han, X., Luh, P.B., Yan, J.H., Stern, G.A.: ‘Energy and spinning reserve payment cost co-optimization’. Proc. IEEE Power and Energy Society General Meeting, 2011.
    39. 39)
      • 39. Bragin, M.A., Han, X., Luh, P.B., Yan, J.H.: ‘Payment cost minimization using Lagrangian relaxation and modified surrogate optimization approach’. Proc. IEEE Power and Energy Society General Meeting, 2011.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2012.0180
Loading

Related content

content/journals/10.1049/iet-gtd.2012.0180
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address