access icon free Dynamic characteristics of the corona discharge during the energised icing process of conductors

Considerable differences exist between the energised icing process and the non-energised icing process of conductors. The main reasons that contribute to these differences are the complex interactions between the icing process and the corona discharge. To reveal these interactions, the dynamic characteristics of the corona discharge in energised icing process have to be studied. The energised icing tests of conductors are carried out in the artificial climate chamber. The short-term statistical characteristic and the long-term variance trend of corona properties are obtained by using the Q–V trace method. Experimental results are analysed as well. The results indicate that the distribution of the magnitude and the power of the discharge approximately obeys the normal distribution. Also, with the accumulating of the ice, the mean values of the short-term discharge power and the magnitude increase initially then saturation appears after the increasing period. The saturation time is related to the icing velocity of the conductor. When the electric field strength is >10 kV/cm, the icing velocity will decrease if the electric field is increased. The standard deviations of the magnitude remain in the same level when the electric field is varying.

Inspec keywords: ice; conductors (electric); electric fields; corona; freezing

Other keywords: artificial climate chamber; Q–V trace method; conductors; electric field strength; icing velocity; corona discharge; icing process; standard deviations; Q–V trace method; short-term statistical characteristic

Subjects: Power transmission lines and cables; Gaseous insulation, breakdown and discharges; Conductors

References

    1. 1)
      • 11. Feng, R., Castle, G.S., Jayaram, S.: ‘Automated system for power measurement in the silent discharge’, IEEE Trans. Ind. Appl., 1998, 34, (3), pp. 563570 (doi: 10.1109/28.673727).
    2. 2)
      • 3. Makkonen, L.: ‘Models for the growth of rime, glaze, icicles and wet snow on structures’, Philos. Trans., Math. Phys. Eng. Sci., 2000, 358, (1776), pp. 29132939 (doi: 10.1098/rsta.2000.0690).
    3. 3)
      • 6. Phan, L.C., Laforte, J.L.: ‘The influence of electro-freezing on ice formation on high voltage dc transmission lines’, Cold Regions Sci. Technol., 1981, 4, (1), pp. 1525 (doi: 10.1016/0165-232X(81)90027-6).
    4. 4)
      • 15. Boulet, L., Jakubczyk, B.J.: ‘A-C corona in foul weather I-above freezing point’, IEEE Trans. PAS, 1964, 83, (5), pp. 508512.
    5. 5)
      • 13. Wagner, C.F., Lloyd, B.L.: ‘Effects of corona on traveling waves’, AIEE Trans. PAS, 1955, 74, (3), pp. 858872.
    6. 6)
      • 22. Van Brunt, R.J.: ‘Stochastic properties of partial-discharge phenomena’, IEEE Trans. Electr. Insul., 1991, 26, (5), pp. 902948 (doi: 10.1109/14.99099).
    7. 7)
      • 9. Béquina, Ph., Castor, K., Scholten, J.: ‘Electric wind characterisation in negative point-to-plane corona discharges in air’, Eur. Phys. J. Appl. Phys., 2003, 22, (1), pp. 4149 (doi: 10.1051/epjap:2003006).
    8. 8)
      • 23. Al-Arainy, A.A., Malik, N.H., Al-Bahloul, M.K.: ‘Statistical variation of AC corona pulse amplitude in point-to-plane air gaps’, IEEE Trans. Electr.. Insul., 1989, 24, (4), pp. 681687 (doi: 10.1109/14.34203).
    9. 9)
      • 20. Hara, M., Yamashita, T.: ‘Micro-discharge between charged water drop and objects’, J. Electrostat., 1982, 13, (3), pp. 325344 (doi: 10.1016/0304-3886(82)90051-1).
    10. 10)
      • 26. Rong, M., Liu, D., Wang, D., et al: ‘A new structure optimization method for the inter-needle distance of a multineedle-to-plane barrier discharge reactor’, IEEE Trans. Plasma Sci., 2010, 38, (4), pp. 966972 (doi: 10.1109/TPS.2010.2042733).
    11. 11)
      • 4. Naterer, G.F.: ‘Coupled liquid film and solidified layer growth with impinging super-cooled droplets and Joule heating’, Int. J. Heat Fluid Flow, 2003, 24, (2), pp. 223235 (doi: 10.1016/S0142-727X(02)00195-9).
    12. 12)
      • 19. Hara, M., Yamashit, T., Akazaki, M.: ‘Microdischarge characteristics in air gap between spherical particle and plane’, IEE Proc. A, Rev., 1983, 130, (6), pp. 329335.
    13. 13)
      • 1. Peter, Z., Volat, C., Farzaneh, M., Kiss, L.I.: ‘Numerical investigations of a new thermal de-icing method for overhead conductors based on high current impulses’, IET Proc., Gener. Transm. Distrib., 2008, 2, (5), pp. 666675 (doi: 10.1049/iet-gtd:20080033).
    14. 14)
      • 14. Kogelschatz, U.: ‘Dielectric-barrier discharges: their history, discharge physics, and industrial applications’, Plasma Chem. Plasma Process., 2003, 23, (1), pp. 146 (doi: 10.1023/A:1022470901385).
    15. 15)
      • 2. Yang, Q., Sima, W., Sun, C., Wu, K., Li, J.: ‘A new AC flashover model of ice-covered HV insulators based on numerical electric field analysis’, IET Proc., Gener. Transm. Distrib., 2008, 2, (4), pp. 600609 (doi: 10.1049/iet-gtd:20080006).
    16. 16)
      • 8. Farzaneh, M.: ‘Ice accretions on high-voltage conductors and insulators and related phenomena’, Philos. Trans., Math. Phys. Eng. Sci., 2000, 358, (1776), pp. 29713005 (doi: 10.1098/rsta.2000.0692).
    17. 17)
      • 12. Falkenstein, Z., Coogan, J.J.: ‘Micro-discharge behavior in the silent discharge of nitrogen-oxygen and water-air mixtures’, J. Appl. Phys. D, 1997, 30, (5), pp. 817825 (doi: 10.1088/0022-3727/30/5/015).
    18. 18)
      • 5. Ping, F., Farzaneh, M., Bouchard, G.: ‘Two-dimensional modeling of the ice accretion process on transmission line wires and conductors’, Cold Regions Sci. Technol., 2006, 46, (2), pp. 132146 (doi: 10.1016/j.coldregions.2006.06.004).
    19. 19)
      • 7. Farzanch, M., Laforte, J.L.: ‘Ice accretion on conductor energized by AC or DC: a laboratory investigation of ice treeing’, Int. J. Offshore Polar Eng., 1994, 4, (1), pp. 4047.
    20. 20)
      • 25. Chen, H., Su, P., Yang, S., Zhu, Y.: ‘Study on bipolar corona discharge in emitting needle electrode configuration’, J. Adv. Oxid. Technol., 2008, 11, (1), pp. 116120.
    21. 21)
      • 21. Von Glahn, P., Van Brunt, R.J.: ‘Continuous recording and stochastic analysis of PD’, IEEE Trans. Dielectr. Electr. Insul., 1995, 2, (4), pp. 590601 (doi: 10.1109/94.407024).
    22. 22)
      • 24. Florkowska, B., Wlodek, R.: ‘Pulse height analysis of partial discharges in air’, IEEE Trans. Electr.. Insul., 1993, 28, (6), pp. 932940 (doi: 10.1109/14.249366).
    23. 23)
      • 16. Boulet, L., Cahill, L., Jakubczyk, B.J.: ‘Alternating current corona in foul weather Il-below freezing point’, IEEE Trans. PAS, 1966, 85, (6), pp. 649656.
    24. 24)
      • 17. Jidenko, N., Petit, M., Borra, J.P.: ‘Electrical characterization of micro-discharges produced by dielectric barrier discharge in dry air at atmospheric pressure’, J. Phys. D, Appl. Phys., 2006, 2, (36), pp. 281293 (doi: 10.1088/0022-3727/39/2/008).
    25. 25)
      • 18. Newell, H.H., Liao, T., Warburton, F.W.: ‘Corona and RI caused by particles on or near EHV conductors: Il-foul weather’, IEEE Trans. PAS, 1968, 87, (4), pp. 911927.
    26. 26)
      • 10. Teisseyre, Y., Farzaneh, M.: ‘On the mechanism of the ice accretion on H.V. conductors’, Cold Regions Sci. Technol., 1990, 18, (1), pp. 18 (doi: 10.1016/0165-232X(90)90034-T).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2011.0762
Loading

Related content

content/journals/10.1049/iet-gtd.2011.0762
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading