Hybrid shuffled frog leaping algorithm and Nelder–Mead simplex search for optimal reactive power dispatch

Access Full Text

Hybrid shuffled frog leaping algorithm and Nelder–Mead simplex search for optimal reactive power dispatch

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The optimal reactive power dispatch (ORPD) problem is a non-linear mixed-variable optimisation problem. This study employs a new evolutionary algorithm that expands the original shuffled frog leaping algorithm (SFLA) to solve this problem. In order to fully exploit the promising solution region, a local search algorithm known as Nelder–Mead (NM) algorithm is integrated with SFLA. The resultant NM-SFLA is very efficient in solving ORPD problem. The most important benefit of the proposed method is higher speed of convergence to a better solution. The proposed method is applied to ORPD problem on IEEE 30-bus, IEEE 57-bus and IEEE 118-bus power systems and compared with four versions of particle swarm optimisation algorithm, two versions of differential evolutionary algorithm and SFLA. The optimal setting of control variables including generator voltages, transformer taps and shunt VAR compensation devices for active power loss minimisation in a transmission system is determined while all the constraints are satisfied. The simulation results show the efficiency of the proposed method.

Inspec keywords: evolutionary computation; particle swarm optimisation; reactive power; power transformers

Other keywords: Nelder-Mead algorithm; Nelder-Mead simplex search; particle swarm optimisation algorithm; non-linear mixed-variable optimisation problem; IEEE 57-bus power systems; evolutionary algorithm; transformer taps; ORPD problem; IEEE 30-bus; IEEE 118-bus power systems; optimal reactive power dispatch; hybrid shuffled frog leaping algorithm

Subjects: Transformers and reactors; Optimisation techniques; Power systems

References

    1. 1)
    2. 2)
      • Shi, Y., Eberhart, R.: `A modified particle swarm optimizer', In Proc. IEEE World Congress Computing Intelligence, May 1998, p. 69–73.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • Kumari, M.S., Sydulu, M.: `Improved particle swarm algorithm applied to optimal reactive power control', Proc. IEEE Int. Conf. Industrial Technology, 2006, p. 1873–1878.
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • S. Singer , J. Nelder . Nelder–Mead algorithm.
    16. 16)
      • Kennedy, J., Eberhart, R.: `Particle swarm optimization', In Proc. IEEE Int. Conf. Neural Networks, November 1995, 4, p. 1942–1948.
    17. 17)
    18. 18)
    19. 19)
      • Zhang, X., Hu, X., Cui, G., Wang, Y., Niu, Y.: `An improved shuffled frog leaping algorithm with cognitive behavior', Proc. 7th World Congress on Intelligent Control and Automation, 2008.
    20. 20)
    21. 21)
    22. 22)
      • K.V. Price , R.M. Stron , J.A. Lampinen . (2005) Differential evolution.
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
      • The IEEE 118-Bus Test System [online]. Available at: http://www.ee.washington.edu/research/pstca/pf118/pg_tca118bus.htm.
    30. 30)
    31. 31)
      • Cai, G., Ren, Z., Yu, T.: `Optimal reactive power dispatch based on modified particle swarm optimization considering voltage stability', In Proc. IEEE Power Engineering Society General Meeting, 2007, p. 1–5.
    32. 32)
      • The IEEE 57-Bus Test System [online]. Available at: http://www.ee.washington.edu/research/pstca/pf57/pg_tca57bus.htm.
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
      • Langdon, W.B., Poli, R.: `Evolving problems to learn about particle swarm and other optimizers', Proc. 2005 IEEE Congress Evolutionary Computation, 2005, 1, p. 81–88.
    39. 39)
      • Huynh, T.H.: `A modified shuffled frog leaping algorithm for optimal tuning of multivariable PID controllers', Proc. ICIT, 2008, p. 1–6.
    40. 40)
      • The IEEE 30-Bus Test System [online]. Available at: http://www.ee.washington.edu/research/pstca/pf30/pg_tca30bus.htm.
    41. 41)
    42. 42)
      • Wright, M.H.: `Direct search methods: once scorned, now respectable', Proc. 1995 Dundee Biennial Conf. in Numerical Analysis, 1995, p. 191–208.
    43. 43)
    44. 44)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2010.0256
Loading

Related content

content/journals/10.1049/iet-gtd.2010.0256
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading