Generation expansion planning in wind-thermal power systems

Access Full Text

Generation expansion planning in wind-thermal power systems

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The intermittency and volatility of wind generation (WG) would require additional upward and downward reserves, as well as enhanced ramping capabilities in power systems. This study investigates the optimal expansion planning of fast-response generating capacity (e.g. gas-fired units) to accommodate the uncertainty of WG. The study utilises a mixed integer programming-based security-constrained unit commitment for analysing operational and reliability issues related to the proposed optimisation problem. Numerical experiments signify the effectiveness of the proposed method.

Inspec keywords: power generation planning; integer programming; power generation reliability; wind power plants; thermal power stations

Other keywords: generation expansion planning; security-constrained unit commitment; wind-thermal power systems; generating capacity; optimisation problem; wind generation; mixed integer programming

Subjects: Wind power plants; Reliability; Thermal power stations and plants; Optimisation techniques; Power system planning and layout

References

    1. 1)
      • B.S. Borowy , A.M. Salameh . Optimum photovoltaic array size for a hybrid wind/PV system. IEEE Trans. Energy Convers. , 3 , 482 - 488
    2. 2)
      • Chen, C.L., Lee, T.Y.: `Impact analysis of transmission capacity constraints on wind power penetration and production cost in generation dispatch', Int. Conf. Intelligent Systems Applications to Power Systems, ISAP, 2007.
    3. 3)
      • J. Dupačová , N. Gröwe-Kuska , W. Römisch . Scenario reduction in stochastic programming an approach using probability metrics. Math. Program. , 493 - 511
    4. 4)
      • E.S. Gavanidou , A.G. Bakirtzis , P.S. Dokopoulos . A probabilistic method for the evaluation of the performance of wind–diesel energy systems. IEEE Trans. Power Syst. , 3 , 418 - 425
    5. 5)
      • Yong, L., Tao, S.: `Economic dispatch of power system incorporating international wind power plant', Power Engineering Conf. (IPEC), 2007, p. 159–162.
    6. 6)
      • Goel, L., Wu, Q., Wang, P.: `Reliability enhancement of a deregulated power system considering demand response', IEEE/PES General Meeting, 2006.
    7. 7)
      • B. Kirby , M.R. Milligan . Facilitating wind development: the importance of electric industry structure. Electr. J. , 3 , 40 - 54
    8. 8)
      • G. Papaefthymiou , B. Klöckl . MCMC for wind power simulation. IEEE Trans. Energy Convers. , 1 , 234 - 240
    9. 9)
      • Platts, J.E.: `Impact of regional greenhouse gas initiative and renewable portfolio standards on power system planning', Power Engineering Society General Meeting, 2006.
    10. 10)
      • M.R. Patel . (1999) Wind and solar power systems.
    11. 11)
      • J.X. Wang , X.F. Wang , Y. Wu . Operating reserve model in the power market. IEEE Trans. Power Syst. , 1 , 223 - 229
    12. 12)
      • J.V. Seguro , T.W. Lambert . Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis. J. Wind Engng. Ind. Aerodyn. , 1 , 75 - 84
    13. 13)
      • M. Shahidehpour , H. Yamin , Z.Y. Li . (2002) Market operations in electric power systems.
    14. 14)
      • GAMS/SCENRED Documentation. Available at www.gams.com/docs/document.htm.
    15. 15)
      • C.L. Chen . Optimal wind–thermal generating unit commitment. IEEE Trans. Power Syst. , 1 , 273 - 279
    16. 16)
      • Botterud, A., Wang, J., Monteiro, C., Miranda, V.: `Wind power forecasting and electricity market operations', The 32nd IAEE Int. Conf., 2009, San Francisco, California.
    17. 17)
    18. 18)
      • E.S. Gavanidou , A.G. Bakirtzis . Design of a standalone system with renewable energy sources using trade-off methods. IEEE Trans. Energy Convers. , 1 , 42 - 48
    19. 19)
      • Wang, J., Botterud, A., Miranda, V., Monteiro, C., Sheble, G.: `Impact of wind power forecasting on unit commitment and dispatch', 8thInt. Workshop on Large-Scale Integration of Wind Power into Power Systems, 2009, Bremen, Germany.
    20. 20)
      • Hamidi, V., Li, F., Robinson, F.: `Responsive demand in networks with high penetration of wind power', IEEE/PES Transmission and Distribution Conf. and Exposition, 2008, p. 1–7.
    21. 21)
      • M.A. Ortega-Vazquez , D.S. Kirschen . Estimating the spinning reserve requirements in systems with significant wind power generation penetration. IEEE Trans. Power Syst. , 1 , 114 - 124
    22. 22)
      • R.A. Schlueter , G.L. Park , M. Lotfalian , H. Shayanfar , J. Dorsey . Modification of power system operation for significant wind generation penetration. IEEE Trans. Power Appar. Syst. , 1 , 153 - 161
    23. 23)
      • C.G. Justus , W.R. Hargraves , A. Mikhail , D. Graber . Methods for estimating wind speed frequency distributions. J. Appl. Meteorol. , 3 , 350 - 353
    24. 24)
      • Jacobbs, M.B.: `Transmission recommendations for high wind penetration', Power Engineering Society General Meeting, 2007.
    25. 25)
    26. 26)
      • Hamidi, V., Li, F., Yao, L., Bazargan, M.: `Domestic demand side management for increasing the value of wind', Int. Conf. Electricity Distribution, CICED, 2008, p. 1–10.
    27. 27)
    28. 28)
      • R. Billinton , G. Bai . Generating capacity adequacy associated with wind energy. IEEE Trans. Power Syst. , 3 , 641 - 646
    29. 29)
    30. 30)
      • D. Berry . Innovation and the price of wind energy in the US. Energy Policy , 11 , 4493 - 4499
    31. 31)
      • L. Wu , M. Shahidehpour , T. Li . Stochastic security-constrained unit commitment. IEEE Trans. Power Syst. , 2 , 800 - 811
    32. 32)
      • J. Wang , M. Shahidehpour , Z. Li . Security-constrained unit commitment with volatile wind power generation. IEEE Trans. Power Syst. , 3 , 1319 - 1327
    33. 33)
      • G.L. Johnson . (2006) Wind energy systems.
    34. 34)
      • M.A. Alhusein , O. Abu-Leiyah , G.A. Inayatullah . Combined system of renewable energy for grid-connected advanced communities. J. Renew. Energy , 6 , 563 - 566
    35. 35)
    36. 36)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2009.0695
Loading

Related content

content/journals/10.1049/iet-gtd.2009.0695
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading