Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Lightning attachment models and maximum shielding failure current of overhead transmission lines: implications in insulation coordination of substations

Lightning attachment models and maximum shielding failure current of overhead transmission lines: implications in insulation coordination of substations

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The maximum shielding failure current of overhead transmission lines is an important parameter in evaluating the shielding performance of the lines and in insulation coordination of substations. General expressions for the estimation of the maximum shielding failure current of transmission lines, derived by employing several lightning attachment models in shielding analysis, are presented. An application to typical 110 kV up to 1150 kV overhead transmission lines shows that there is a great variability in maximum shielding failure current among lightning attachment models. The importance of maximum shielding failure current in insulation coordination of substations is demonstrated with the aid of alternative transients program-electromagnetic transients program (ATP-EMTP) simulations. The computed overvoltages impinging on 150 and 400 kV gas insulated system (GIS) substations because of shielding failure of the incoming overhead transmission lines, being dependent upon shielding failure current, vary with the lightning attachment model employed in shielding analysis of the lines. Implementation of the electrogeometric model adopted by IEEE Std 1243:1997 in shielding analysis imposes high requirements on protection of the substations against incoming shielding failure surges.

References

    1. 1)
      • Gaivoronsky, A.S., Karasyuk, K.V., Prokofyeva, E.N.: `Numerical investigations of lightning proofness of UHV overhead lines', paper 4p.9, Proc. 27th Int. Conf. on Lightning Protection, 2004, Avignon, France, p. 1–5.
    2. 2)
      • Yuan, X.: `Investigation on the striking distance of lightning strokes to overhead lines', December 2001, PhD, Tennessee Technological University, Cookeville, TN.
    3. 3)
      • H.R. Armstrong , E.R. Whitehead . Field and analytical studies of transmission line shielding. IEEE Trans. Power Appar. Syst. , 270 - 281
    4. 4)
      • R.B. Anderson , A.J. Eriksson . Lightning parameters for engineering application. Electra , 65 - 102
    5. 5)
      • F.S. Young , J.M. Clayton , A.R. Hileman . Shielding of transmission lines. IEEE Trans. Power Appar. Syst. , 4 , 132 - 154
    6. 6)
      • B. Vahidi , M. Yahyaabadi , M.R.B. Tavakoli , S.M. Ahadi . Leader progression analysis model for shielding failure computation by using the charge simulation method. IEEE Trans. Power Deliv. , 4 , 2201 - 2206
    7. 7)
      • Mikropoulos, P.N., Tsovilis, T.E.: `Experimental investigation of the Franklin rod protection zone', paper 461, Proc. 15th Int. Symp. on High Voltage Engineering, 2007, Ljubljana, Slovenia, p. 1–5.
    8. 8)
      • P.N. Mikropoulos , T.E. Tsovilis . Interception probability and shielding against lightning. IEEE Trans. Power Deliv. , 2 , 863 - 873
    9. 9)
      • L.D. Darveniza , F. Popolansky , E.R. Whitehead . Lightning protection of UHV lines. Electra , 39 - 69
    10. 10)
    11. 11)
      • N.I. Petrov , R.T. Waters . Determination of the striking distance of lightning to earthed structures. Proc. R. Soc. A, Math. Phys. Eng. Sci. , 589 - 601
    12. 12)
    13. 13)
    14. 14)
      • C.F. Wagner , A.R. Hileman . The lightning stroke-II. AIEE Trans. Power Appar. Syst. , 3 , 622 - 642
    15. 15)
      • Petrov, N.I., Petrova, G., Waters, R.T.: `Determination of attractive area and collection volume of earthed structures', Proc. 25th Int. Conf. on Lightning Protection, 2000, Rhodes, Greece, p. 374–379.
    16. 16)
      • Mousa, A.M., Srivastava, K.D.: `A revised electrogeometric model for the termination of lightning strokes on ground objects', Proc. Int. Aerospace Ground Conf. on Lightning and Static Electricity, 1988, Oklahoma City, OK, p. 324–352.
    17. 17)
      • Mikropoulos, P.N., Tsovilis, T.E., Ananiadis, T.: `The effect of an earthed object on the interception radius of the Franklin rod: an experimental investigation', paper 77, Proc. MedPower, 2008, Thessaloniki, Greece, p. 1–6.
    18. 18)
    19. 19)
    20. 20)
      • Hoidalen, H.K., Mork, B.A., Prikler, L., Hall, J.L.: `Implementation of new features in ATPDraw version 3', Proc. Int. Conf. on Power Systems Transients, 2003, New Orleans, USA, p. 1–5.
    21. 21)
      • J.G. Anderson . (1987) Lightning performance of transmission lines, Laforest J.J. (Ed.): ‘Transmission line reference book – 345 kV and above.
    22. 22)
      • IEC 60071–2: ‘Insulation coordination’, 1996.
    23. 23)
    24. 24)
      • G. Carrara , L. Thione . Switching surge strength of large air gaps: a physical approach. IEEE Trans. Power Appar. Syst. , 2 , 512 - 524
    25. 25)
    26. 26)
      • Eriksson, A.J., Weck, K.H.: `Simplified procedures for determining representative substation impinging lightning overvoltages', paper 33–16, Proc. CIGRE, 1988, Paris.
    27. 27)
      • Modeling guidelines for fast front transients. IEEE Trans. Power Deliv. , 1 , 493 - 506
    28. 28)
      • Bhattarai, R., Rashedin, R., Venkatesan, S., Haddad, A., Griffiths, H., Harid, N.: `Lightning performance of 275 kV transmission lines', paper 138, Proc. 43rd UPEC, 2008, Padova, Italy, p. 1–5.
    29. 29)
      • P. Chowdhuri , G.R. Tajali , X. Yuan . Analysis of striking distances of lightning strokes to vertical towers. IET Gener. Transm. Distrib. , 6 , 879 - 886
    30. 30)
      • M. Becerra , V. Cooray , F. Roman . Lightning striking distance of complex structures. IET Gener. Transm. Distrib. , 1 , 131 - 138
    31. 31)
      • Mikropoulos, P.N., Tsovilis, T.E.: `Lightning attachment models and maximum shielding failure current: application to transmission lines', paper 233, Proc. IEEE PowerTech, 2009, Bucharest, Romania, p. 1–8.
    32. 32)
    33. 33)
      • A simplified method for estimating lightning performance of transmission lines. IEEE Trans. Power Appar. Syst. , 4 , 919 - 932
    34. 34)
      • A.R. Hileman , A.R. Hileman . (1999) Shielding of transmission lines, Insulation coordination for power systems.
    35. 35)
      • J. He , Y. Tu , R. Zeng , J.B. Lee , S.H. Chang , Z. Guan . Numeral analysis model for shielding failure of transmission line under lightning stroke. IEEE Trans. Power Deliv. , 2 , 815 - 822
    36. 36)
      • A. Niknejad .
    37. 37)
      • D.W. Gilman , E.R. Whitehead . The mechanism of lightning flashover on high-voltage and extra-high-voltage transmission lines. Electra , 65 - 96
    38. 38)
      • P.N. Mikropoulos , T.E. Tsovilis . Striking distance and interception probability. IEEE Trans. Power Deliv. , 3 , 1571 - 1580
    39. 39)
      • Estimating lightning performance of transmission lines II – updates to analytical models. IEEE Trans. Power Deliv. , 3 , 1254 - 1267
    40. 40)
      • CIGRE Working Group 33.01: ‘Guide to procedures for estimating the lightning performance of transmission lines’. Technical Bulletin 63, 1991.
    41. 41)
      • Insulation co-ordination of GIS: return of experience, on site tests and diagnostic techniques. Electra , 67 - 97
    42. 42)
      • IEEE 1243–1997: ‘Guide for improving the lightning performance of transmission lines’, 1997.
    43. 43)
      • Mikropoulos, P.N., Tsovilis, T.E.: `Interception radius and shielding against lightning', paper 4–10, Proc. 29th Int. Conf. on Lightning Protection, 2008, Uppsala, Sweden, p. 1–11.
    44. 44)
    45. 45)
      • A.M. Mousa , K.D. Srivastava . Modelling of power lines in lightning incidence calculations. IEEE Trans. Power Deliv. , 1 , 303 - 310
    46. 46)
      • Love, E.R.: `Improvements in lightning stroke modeling and applications to design of EHV and UHV transmission lines', 1973, MSc, University of Colorado, Denver, CO.
    47. 47)
      • T. Suzuki , K. Miyake , T. Shindo . Discharge path model in model test of lightning strokes to tall mast. IEEE Trans. Power Appar. Syst. , 7 , 3553 - 3562
    48. 48)
      • P.N. Mikropoulos , T.E. Tsovilis . Interception probability and proximity effects: implications in shielding design against lightning. IEEE Trans. Power Deliv. , 3 , 1940 - 1951
    49. 49)
      • C.F. Wagner . Lightning and transmission lines. J. Franklin Inst. , 6 , 558 - 594
    50. 50)
      • R.H. Golde , R.H. Golde . (1977) Lightning conductor, Lightning.
    51. 51)
      • R.T. Waters , M. Haddad , D. Warne . (2004) Lightning phenomena and protection systems, Advances in high voltage engineering.
    52. 52)
      • E.R. Whitehead . CIGRE survey of the lightning performance of EHV transmission lines. Electra , 63 - 89
    53. 53)
      • G.W. Brown , E.R. Whitehead . Field and analytical studies of transmission line shielding-II. IEEE Trans. Power Appar. Syst. , 617 - 626
    54. 54)
      • Parameters of lightning strokes: a review. IEEE Trans. Power Deliv. , 1 , 346 - 358
    55. 55)
      • R.H. Golde . The frequency of occurrence and the distribution of lightning flashes to transmission lines. AIEE Trans. , 902 - 910
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2009.0685
Loading

Related content

content/journals/10.1049/iet-gtd.2009.0685
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address