Your browser does not support JavaScript!

Design and analysis of dynamic voltage restorer for deep voltage sag and harmonic compensation

Design and analysis of dynamic voltage restorer for deep voltage sag and harmonic compensation

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A dynamic voltage restorer (DVR) to compensate deep voltage sags and harmonics is proposed. The DVR consists of shunt and series converters connected back-to-back through a dc-to-dc step up converter. The presence of the dc-to-dc step converter permits the DVR to compensate deep voltage sags for long duration. The series converter is connected to the supply side whereas the shunt converter is connected to the load side. With this configuration, there is no need for large dc capacitors. A design procedure for the components of the DVR is presented under a voltage sag condition. The control system of the proposed DVR is based on hysteresis voltage control. Besides voltage sag compensation, the capability of compensating load voltage harmonics has been added to the DVR to increase the power quality benefits to the load with almost negligible effect on the sag compensation capability. The proposed DVR is modelled and simulated using SIMULINK/MATLAB environment. Time domain simulations are used to verify the operation of the DVR with linear and non-linear loads.

Related content

This is a required field
Please enter a valid email address