Neural network-based approach for early detection of cascading events in electric power systems

Access Full Text

Neural network-based approach for early detection of cascading events in electric power systems

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes neural modelling and fault diagnosis methods for the early detection of cascading events in electric power systems. A neural-fuzzy network is used to model the dynamics of the power transmission system in fault-free conditions. The output of the neural-fuzzy network is compared to measurements from the power system and the obtained residuals undergo statistical processing according to a fault detection and isolation algorithm. If a fault threshold, defined by the fault detection and isolation (FDI) algorithm, is exceeded then deviation from normal operation can be detected at its early stages and an alarm can be launched. In several cases fault isolation can be also performed, that is the sources of fault in the power transmission system can be also identified. The performance of the proposed methodology is tested through simulation experiments.

Inspec keywords: power transmission faults; fuzzy neural nets; power engineering computing; statistical analysis; fault diagnosis

Other keywords: power transmission system; power system measurement; fuzzy neural network; statistical processing; fault diagnosis method; electric power system; isolation algorithm; neural network-based approach; fault detection

Subjects: Other topics in statistics; Other topics in statistics; Neural computing techniques; Power transmission, distribution and supply; Power engineering computing

References

    1. 1)
      • V. Galdi , A. Piccolo , P. Siano . Designing an adaptive fuzzy controller for maximum wind energy extraction. IEEE Trans. Energy Conv. , 559 - 569
    2. 2)
      • C.J. Harris , X. Hang , X. Gon . (2002) Adaptive modelling, estimation and fusion from data: a neuro fuzzy approach.
    3. 3)
      • M. Basseville , A. Benveniste , Q. Zhang . (1996) Surveilliance d' installations industrielles: demarchegenerale et conception de l' algorithmique.
    4. 4)
      • , : `Initial review of methods for cascading failure analysis in electric power transmission systems', Proc. IEEE Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century, 2008, Pittsburg, USA, p. 1–8.
    5. 5)
      • Venayagamoorthy, G.K., Harley, R.G.: `Implementation of an adaptive neural network identifier for effective control of turbogenerators', Proc. IEEE Budapest PowerTech Conf., 1999, paper BPT99-431-23.
    6. 6)
      • D.C. Psichogios , L.H. Ungar . SVD-NET: An algorithm that automatically selects network structure. IEEE Trans. Neural Netw. , 3 , 513 - 515
    7. 7)
      • Teeuwsen, S.P., Erlich, I., Fischer, A., El-Sharkawi, M.A.: `Assessment of the small signal stability of the European interconnected electric power system using neural networks', Proc. Large Engineering Systems Conf. Power Engineering, 2001, p. 158–161.
    8. 8)
      • G.G. Rigatos , S.G. Tzafestas . (2004) Fuzzy automata for fault diagnosis: a syntactic analysis approach.
    9. 9)
      • R. Isermann . Local basis function networks for identification of a turbocharger. Proc. IEE Conf. , 1 , 7 - 12
    10. 10)
      • M. Basseville . On-board component fault detection and isolation using the statistical local approach. Automatica , 11 , 1391 - 1415
    11. 11)
      • G. Rigatos , Q. Zhang . Fuzzy model validation using the local statistical approach. Fuzzy Sets Syst. , 7 , 882 - 904
    12. 12)
      • J.C. Tan , P.A. Crossley , P.G. McLaren . Application of a wide area backup protection expert system to prevent cascading outages. IEEE Trans. Power Deliv. , 2 , 375 - 380
    13. 13)
      • Carreras, B.A., Lynch, V.E., Dobson, I.: `Dynamical and probabilistic approaches to the study of blackout vulnerability of the power transmission grid', Proc. 37th Ann. Hawaii Int. Conf. System Sciences, January 2004, p. 55–61.
    14. 14)
      • Makarov, Y.V., Voropai, N.I., Efimov, D.N.: `Complex emergency control system against blackout in Russia', Proc. IEEE Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century, 2008, Pittsburg, USA, p. 1–8.
    15. 15)
      • M. Basseville . Information criteria for residual generation and fault detection and isolation. Automatica , 5 , 783 - 803
    16. 16)
      • Hiyama, T., Suzuki, N., Funakoshi, T.: `On-line coherency monitoring of power system oscillations', Proc. IEEE Power Engineering Society Summer Meeting, 2000, 3, p. 839–1844.
    17. 17)
      • D. Dubois , H. Prade , L. Ughetto . Checking the coherence and redundancy of fuzzy knowledge bases. IEEE Trans. Fuzzy Syst. , 3 , 398 - 417
    18. 18)
      • Archer, B.A., Annakkage, U.D.: `Monitoring and predicting power system behavior by tracking dominant modes of oscillation', Proc. IEEE Power Engineering Society General Meeting, 2005, p. 1475–1482, vol. 2.
    19. 19)
      • C.K. Chak , G. Feng , J. Mia . An adaptive fuzzy neural network for MIMO system model approximation in high dimensional spaces. IEEE Trans. Syst. Man Cybern. – B: Cybern. , 3 , 436 - 446
    20. 20)
      • Zhang, Q.: `Fault detection and isolation with nonlinear black-box models', Proc. SYSID, 1997, Ki-Takyushu, Japan.
    21. 21)
      • M. Basseville , M. Abdelghani , A. Benveniste . (1997) Sub-space-based fault detection and isolation methods – application to vibration monitoring.
    22. 22)
      • Teeuwsen, S.P., Erlich, I., El-Sharkawi, M.A.: `Small-signal stability assessment based on advanced neural network methods', IEEE Power Engineering Society General Meeting, 2003, 4, p. 13–17.
    23. 23)
      • R. Isermann . (2006) Fault-diagnosis systems: an introduction from fault detection to fault tolerance.
    24. 24)
      • Elizondo, D.C., de La Ree, J., Phadke, A.G., Horowitz, S.: `Hidden failures in protection systems and their impact on wide-area disturbances', Proc. IEEE 2001 PES Winter Meeting, 2001, 2, p. 710–714.
    25. 25)
      • Hiyama, T., Suzuki, N., Kita, T., Funakoshi, T.: `Development of real time stability monitoring system for power system operation', Proc. IEEE Power Engineering Society Winter Meeting, 1999, 1, p. 525–530.
    26. 26)
      • S.G. Tzafestas , E.N. Skoundrianos , G.G. Rigatos . (2000) Nonlinear neural control of discrete-time systems using local model networks’, ‘Knowledge-based & intelligent engineering systems.
    27. 27)
      • P. Kundur . (1994) Power system stability and control.
    28. 28)
      • Rigatos, G.G., Zhang, Q.: `Fuzzy model validation using the local statistical approach', IEEE SMC'02 Conf., 2002, Hammamet, Tunisia.
    29. 29)
      • Q. Zhang , M. Basseville , A. Benveniste . Early warning of slight changes in systems. Automatica , 1 , 95 - 113
    30. 30)
      • M. Setnes , R. Babuska , U. Kaymak , H.R. van Nauta Lemke . Similarity measures in fuzzy rule base simplification. IEEE Trans. Syst. Man Cybern. – B: Cybern. , 3 , 376 - 386
    31. 31)
      • S.S. Ge , C.C. Hang , T. Zhang . Adaptive neural network control of nonlinear systems by state and output feedback. IEEE Trans. Syst. Man Cyber. – B: Cybern. , 818 - 828
    32. 32)
      • Guoqiang, H., Renmu, H., Huachun, Y., Peng, W., Rui, M.: `Iterative Prony method based power system low frequency oscillation mode analysis and PSS design', Proc. Transmission and Distribution Conf. and Exhibition, 2005, 1, p. 1–6.
    33. 33)
    34. 34)
      • Setnes, M., Kaymak, U.: `Extended fuzzy c-means with volume prototypes and cluster merging', Proc. EUFIT'98, 1998, Aachen, Germany.
    35. 35)
      • G. Anderson , P. Donalek , R. Farmer . Causes of the 2003 major grid blackouts in North America and Europe, and recommended means to improve system dynamic performance. IEEE Trans. Power Syst. , 4 , 1922 - 1928
    36. 36)
      • M. Basseville , I.V. Nikiforov . (1993) Detection of abrupt changes.
    37. 37)
      • G.G. Rigatos , S.G. Tzafestas . (2007) Extended Kalman filtering for fuzzy modeling and multi-sensor fusion, mathematical and computer modeling of dynamical systems.
    38. 38)
    39. 39)
      • S. Haykin . Neural networks: a comprehensive foundation.
    40. 40)
      • M. Klein , G.J. Rogers , S. Murty , P. Kundur . Analytical investigation of factors influencing power systems stabilizers performance. IEEE Trans. Energy Conv. , 3 , 382 - 390
    41. 41)
      • T. Takaki , M. Sugeno . Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. , 116 - 132
    42. 42)
      • S. Zhang , X. Xie , J. andWu . WAMS-based detection and early-warning of low-frequency oscillations in large-scale power systems. Electric Power Syst. Res. , 5 , 897 - 906
    43. 43)
      • Bruno, S., de Benedictis, M., Delfanti, M., LaScala, M.: `Preventing blackouts through reactive rescheduling under dynamical and protection system constraints', Proc: IEEE PowerTech 2005, St. Petersburg, Russia, p. 1–8.
    44. 44)
      • Chen, Q., Zhu, K., McCalley, J.D.: `Dynamic decision-event trees for rapid response to unfolding events in bulk transmission systems', Proc. IEEE 2001 Power Technology Conf., September 2001, 2.
    45. 45)
      • Z.L. Gaing . Wavelet-based neural network for power disturbance recognition and classification. IEEE Trans. Power Deliv. , 4 , 1560 - 1568
    46. 46)
    47. 47)
    48. 48)
    49. 49)
    50. 50)
      • M-Y. Chen , D.A. Linkens . A systematic neuro-fuzzy modeling framework with application to material property prediction. IEEE Trans. Syst. Man Cybern. – B: Cybern. , 5 , 781 - 790
    51. 51)
      • Wilson, D.H.: `Managing oscillatory stability using online dynamics measurements', Proc. IEEE Power Systems Conf. and Exposition, 2004, 2, p. 1101–1108.
    52. 52)
      • Isermann, R., Schreiber, A.: `Identification methods for experimental modelling of nonlinear combustion processes', Proc. Collection of Technical Papers – 4th Int. Energy Conversion Engineering Conf., 2006, 2, p. 1468–1485.
    53. 53)
      • D.P. Bertsekas . Incremental least squares methods and the extended Kalman filter. SIAM J. Optim. , 3 , 807 - 822
    54. 54)
      • M. Basseville , A. Benveniste , B. Gach-Devauchelle . Damage monitoring in vibration mechanics: issues in diagnostics and predictive maintenance. Mech. Syst. Signal Process. , 5 , 401 - 423
    55. 55)
      • V. Brandwajn , A.B.R. Kumar , A. Ipakchi , A. Bose , S.D. Kuo . Severity indices for contingency screening in dynamic security assessment. IEEE Trans. Power Syst. , 1136 - 1142
    56. 56)
    57. 57)
      • D. Simon . Sum normal optimization of fuzzy membership functions. Int. J. Uncertainty Fuzziness Knowledge-based Syst. , 363 - 384
    58. 58)
      • V. Calderaro , V. Galdi , A. Piccolo , P. Siano . Adaptive relays for overhead line protection. Electr. Power Syst. Res. , 1552 - 1559
    59. 59)
      • Nelles, O., Fischer, M.: `Local linear model trees (LOLIMOT) for linear system identification of a cooling blast', Proc: EUFIT 96 Conf., 1998, Aachen, Germany.
    60. 60)
      • G.K. Venayagamoorthy , R.G. Harley . A Continually online trained neurocontroller for excitation and turbine control of a turbogenerator. IEEE Trans. Energy Conv. , 3 , 261 - 269
    61. 61)
    62. 62)
    63. 63)
      • J. Yen , L. Wang . Simplifying fuzzy rule-based models using orthogonal transformation methods. IEEE Trans. Syst. Man Cybern. – B , 13 - 24
    64. 64)
      • Ying, H., Zheng, X., Wulue, P.: `A practical analysis method of low frequency oscillation for large power systems', Proc. Power Engineering Society General Meeting, 2005, 2, p. 1623–1629.
    65. 65)
      • Hojo, M., Ohnishi, T., Mitani, Y., Saeki, O., Ukai, H.: `Observation of frequency oscillation in western Japan 60 Hz power system based on multiple synchronized phasor measurements', Proc. IEEE Power Tech Conf., 2003, 2, p. 1–6.
    66. 66)
      • Mathis, G.: `Outils dédetection des ruptures et de diagnostic – application à la surveillance de Turbines à Gaz', 1994, Thèse de Doctorat, Université de Rennes I.
    67. 67)
      • Korba, P., Larsson, M., Rehtanz, C.: `Detection of oscillations in power systems using Kalman filtering techniques', Proc. IEEE Conf. Control Applications, 2003, 1, p. 183–188.
    68. 68)
    69. 69)
      • C.L. DeMarco . A phase transition model for cascading network failure. IEEE Control Syst. Mag. , 6 , 40 - 51
    70. 70)
      • J.J. Sanchez-Gasca , J.H. Chow . Performance comparison of three identification methods for the analysis of electromechanical oscillation. IEEE Trans. Power Syst. , 3 , 995 - 1002
    71. 71)
      • C.C. Liu , J. Jung , G.T. Heydt , V. Vittal , A.G. Phadke . The strategic power infrastructure defense (SPID) system: a conceptual design. IEEE Control Syst. Mag. , 4 , 40 - 52
    72. 72)
      • A.R. Edwards , K.W. Chan , R.W. Dunn , A.R. Daniels . Transient stability screening using artificial neural networks within a dynamic security assessment system. Proc. Inst. Electr. Eng. Gen. Trans. Distrib. , 129 - 134
    73. 73)
    74. 74)
      • J.-S.R. Jang , C.-T. Sun , E. Mizutani . (1997) Neurofuzzy and soft-computing, a computational approach to learning and machine intelligence.
    75. 75)
      • H. Ren , I. Dobson . Using transmission line outage data to estimate cascading failure propagation in an electric power system. IEEE Trans. Circuits Syst. II , 9 , 927 - 931
    76. 76)
      • S.G. Tzafestas , G.G. Rigatos . Self-tuning multivariable fuzzy and neural control using genetic algorithms. J. Inf. Optim. Sci. , 2 , 257 - 287
    77. 77)
      • Basseville, M., Benveniste, A., Mathis, G., Zhang, Q.: `Monitoring the combustion set of a gas turbine', Proc. Safeprocess 1994, Helsinki, Finland.
    78. 78)
    79. 79)
      • Hua, Y., Yutian, L., Xinsheng, N.: `Low frequency oscillation analysis and damping based on Prony method and sparse eigenvalue technique', Proc. IEEE Int. Conf. Networking, Sensing and Control, 2006, 1, p. 1006–1010.
    80. 80)
      • K. Yamashita , S-K. Joo , J. Li , P. Zhang , C.C. Liu . Analysis, control and economic impact assessment of major blackout events. Eur. Trans. Elect. Power , 854 - 871
    81. 81)
      • M. Setnes , R. Babuska , R. Farinwata , D. Filev , R. Langari . (2000) Fuzzy modeling for predictive control, Fuzzy control – synthesis and analysis.
    82. 82)
    83. 83)
      • Q. Zhang , A. Benveniste . Wavelet networks. IEEE Trans. Neural Netw. , 6 , 869 - 898
    84. 84)
      • L.X. Wang . (1997) A course in fuzzy systems and control.
    85. 85)
      • Yutian, L., Chi, X., Yuanyuan, S.: `Real-time phasor measurement for low frequency oscillation in power system;', Proc. IEEE Int. Symp. Circuits and Systems, 2005, 4, p. 3889–3893.
    86. 86)
    87. 87)
      • S. Song , M. Kezunovic . A new analysis method for early detection and prevention of cascading events. Electr. Power Syst. Res. , 8 , 1132 - 1142
    88. 88)
      • Q. Zhang , M. Basseville , A. Benveniste . Fault detection and isolation in nonlinear dynamic systems: a combined input–output and local approach. Automatica , 11 , 1359 - 1373
    89. 89)
      • P.Y. Glorennec . (1999) Algorithmes d' apprentissage pour systèemes d' inférence floue.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2008.0475
Loading

Related content

content/journals/10.1049/iet-gtd.2008.0475
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading