Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Output feedback SSR damping controller design based on modular discrete-time dynamic model of TCSC

Output feedback SSR damping controller design based on modular discrete-time dynamic model of TCSC

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This paper presents the use of a modular, sample invariant, six samples per cycle, discrete-time model of a thyristor controlled series capacitor (TCSC) for output feedback-based subsynchronous resonance (SSR) damping controller (SSDC) design. An SSDC is used to alleviate the instability of torsional modes caused by external fixed capacitors used in conjunction with a TCSC. It is found that damping torque analysis-based design of an SSDC using a non-local signal like generator slip is straightforward and the resulting SSDC has a simple compensator structure. On the other hand, the residues and pole-zero configuration with the line current magnitude as a feedback signal are such that it is relatively more difficult to obtain a robust design, especially if several subsynchronous torsional modes are present. Eigenvalue analysis and digital simulation studies indicate that the TCSC model can accurately predict the behaviour of a TCSC with and without a damping controller.

References

    1. 1)
      • A. Ghosh , G. Ledwich . Modelling and control of thyristor controlled switched compensators. IEE Proc. Gener. Transm. Distrib. , 3 , 297 - 304
    2. 2)
      • K. Kabiri , S. Henschel , J.R. Martí , H.W. Dommel . A discrete state space model for SSR stabilizing controller design for TCSC compensated system. IEEE Trans. Power Deliv. , 466 - 473
    3. 3)
      • K.R. Padiyar . (1999) Analysis of subsynchronous resonance in power systems.
    4. 4)
      • K.R. Padiyar , R.K. Varma . Damping torque analysis of static var system controllers. IEEE Trans. Power Syst. , 2 , 458 - 465
    5. 5)
      • The Mathworks Incorporated: ‘MATLAB and SIMULINK’, www.mathworks.com, 1994–2007.
    6. 6)
      • Joshi, S.R., Kulkarni, A.M.: `Comparative evaluation of discrete-time dynamic models of TCSC', Proc. Int. Conf. Power Systems Computation Conf. – 2008, July 2008, Glasgow, Scotland, Paper No-120.
    7. 7)
      • Reader's guide to subsynchronous resonance. IEEE Trans. Power Syst. , 1 , 150 - 157
    8. 8)
      • Angquist, L.: `Synchronous voltage reversal control of thyristor controlled capacitor', 2002, PhD, Royal Institute of Technology, Stockholm.
    9. 9)
      • L.A.S. Pilotto , A. Bianco , W.F. Long , A.A. Edris . Impact of TCSC control methodologies on subsynchronous oscillations. IEEE Trans. Power Deliv. , 243 - 252
    10. 10)
      • First bench mark model for computer simulation of subsynchronous resonance. IEEE Trans. Power Appar. Syst. , 5 , 1565 - 1572
    11. 11)
      • B.K. Perkins , M.R. Iravani . Dynamic modeling of a TCSC with applications to SSR analysis. IEEE Trans. Power Syst. , 4 , 1619 - 1625
    12. 12)
      • S.G. Jalali , R.H. Lasseter , I. Dobson . Dynamic response of a thyristor controlled switched capacitor. IEEE Trans. Power Deliv. , 1609 - 1615
    13. 13)
      • Countermeasures to subsynchronous resonance problems. IEEE Trans. Power Appar. Syst. , 5 , 1810 - 1818
    14. 14)
      • N. Kakimoto , A. Phongphanphanee . Subsynchronous resonance damping control of thyristor-controlled series capacitor. IEEE Trans. Power Deliv. , 3 , 1051 - 1059
    15. 15)
      • Comparison of SSR calculations and test results. IEEE Trans. Power Syst. , 1 , 336 - 344
    16. 16)
      • R.J. Piwko , E.V. Larsen . HVDC system control for damping of subsynchronous oscillations. IEEE Trans. Power Appar. Syst. , 7 , 2203 - 2211
    17. 17)
      • P.M. Anderson , B.L. Agrawal , J.E. Van Ness . (1990) Subsynchronous resonance in power systems.
    18. 18)
      • Gole, A.M., Sood, V.K., Mootoosamy, L.: `Validation and analysis of a grid control system using D–Q–Z transformation for static compensator systems', Canadian Conf. on Electrical and Computer Engineering, Montreal, PQ, Canada, p. 745–748.
    19. 19)
      • H.A. Othman , L. Angquist . Analytical modelling of thyristor-controlled series capacitor for SSR study. IEEE Trans. Power Syst. , 1 , 119 - 127
    20. 20)
      • N.G. Hingorani , L. Gyugyi . (2000) Understanding FACTS – concepts and technology of flexible AC transmission systems.
    21. 21)
      • S.G. Jalali , R.A. Hedin , M. Pereira , K. Sadek . A stability model for the advanced series compensator (ASC). IEEE Trans. Power Deliv. , 2 , 1128 - 1137
    22. 22)
      • I. Dobson . Stability of ideal thyristor and diode switching circuits. IEEE Trans. Circuits Syst. I. , 517 - 529
    23. 23)
      • K.R. Padiyar . (2007) FACTS controllers in power transmission and distribution.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2008.0439
Loading

Related content

content/journals/10.1049/iet-gtd.2008.0439
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address