Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Development of a computer platform for visualisation and simulation of vehicular DC distribution systems

Contrary to other in-car engineering systems where the use of simulation tools is highly extended prior to a prototyping stage, the simulation of vehicular electrical distribution systems (EDSs) is not still a common practice as manufacturers so far have mainly relied on laborious empirical procedures for technical validation. However, to provide flexibility in EDS design and procure even faster endorsement, the development of computation tools on this subject is compelling considering the intricacy of these networks. To face this challenge, this work provides guidelines and experiences to develop a customised platform for EDS visualisation and simulation within the automotive industry context. The use of agile techniques for software development, visual analytics, and tailored power flow methods is highlighted among other aspects. Realistic case studies are presented to discuss the attributes of the implemented computational tool. To also provide relevant perspectives on how future EDS visualisation and simulation platforms will be developed, the latest research is discussed in topics such as new electric/electronic architectures, electro-thermal analysis, electronic fuses, mild hybrid power trains, hardware in the loop, and high-voltage networks.

References

    1. 1)
      • 9. Mantilla-Perez, P., Perez-Rua, J., Diaz-Millan, M., et al: ‘Power flow simulation in the product development process of modern vehicular DC distribution systems’, IEEE Trans. Veh. Technol. Syst., 2020, 69, (5), pp. 50255040.
    2. 2)
      • 19. Sedlmair, M., Isenberg, P., Baur, D., et al: ‘Information visualization evaluation in large companies: challenges, experiences and recommendations’, Inf. Vis., 2011, 10, (3), pp. 248266.
    3. 3)
      • 83. Pfeffer, R., Leichsenring, T.: ‘Continuous development of highly automated driving functions with vehicle-in-the-loop using the example of euro NCAP scenarios’, in ‘Simulation and testing for vehicle technology’ (Springer, TU Berlin, 2016, 7th edn.), pp. 3342.
    4. 4)
      • 82. Brogle, C., Zhang, C., Lim, K.L., et al: ‘Hardware-in-the-loop autonomous driving simulation without real-time constraints’, IEEE Trans. Intell. Veh., 2019, 4, (3), pp. 375384.
    5. 5)
      • 66. Rong, R., Wang, R.: ‘High efficiency 1.5 kW 48 V–12 V DCDC converter with leadless MOSFET for mild hybrid electric vehicle’. PCIM Asia 2018; Int. Exhibition and Conf. for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Shanghai, People's Republic of China, 2018, pp. 16.
    6. 6)
      • 38. Weber, J.D., Overbye, T.J.: ‘Voltage contours for power system visualization’, IEEE Trans. Power Syst., 2000, 15, (1), pp. 404409.
    7. 7)
      • 30. Xiqiao, L., Zhou, Y.: ‘Analysis of large-scale electric vehicles charging behavior using data visualization’. 2017 IEEE 14th Int. Conf. on Networking, Sensing and Control (ICNSC), Calabria, Italy, 2017, pp. 384388.
    8. 8)
      • 27. Kodama, R., Koge, M., Taguchi, S., et al: ‘COMS-VR: Mobile virtual reality entertainment system using electric car and head-mounted display’. 2017 IEEE Symp. on 3D User Interfaces (3DUI), Los Angeles, CA, USA, 2017, pp. 130133.
    9. 9)
      • 67. Nazari, S., Prakash, N., Siegel, J., et al: ‘On the effectiveness of hybridization paired with eco-driving’. 2019 American Control Conf. (ACC), Philadelphia, PA, USA, 2019, pp. 46354640.
    10. 10)
      • 6. I.S.O. Central Secretary: ‘Road vehicles (International Organization for Standardization, 2014. ISO 8820:2014)’. Available athttps://www.iso.org/standard/61777.html.
    11. 11)
      • 59. InsideEVs: ‘Global EV sales for 2019’ (InsideEVs, Miami, USA, 2019). Available at https://tinyurl.com/usyd3d6, Accessed on 2 March 2020.
    12. 12)
      • 3. Lin, C., Rao, L., D'Ambrosio, J., et al: ‘Electrical architecture optimization and selection. Cost minimization via wire routing and wire sizing’, SAE Int. J. Passeng. Cars – Electron. Electr. Syst., 2014, 7, pp. 502509.
    13. 13)
      • 37. Arboleya, P., Mohamed, B., González-Morán, C., et al: ‘BFS algorithm for voltage-constrained meshed DC traction networks with nonsmooth voltage-dependent loads and generators’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 15261536.
    14. 14)
      • 24. Seeling, C., Watson, G., Sun, K.: ‘GPU-based interactive, stereoscopic visualization of automotive crash simulations’, IEEE Comput. Graph. Appl., 2007, 27, (6), pp. 611.
    15. 15)
      • 60. Torres-Sanz, V., Sanguesa, J.A., Martinez, F.J., et al: ‘Enhancing the charging process of electric vehicles at residential homes’, IEEE Access, 2018, 6, pp. 2287522888.
    16. 16)
      • 10. Kumar, G., Bhatia, P.K.: ‘Comparative analysis of software engineering models from traditional to modern methodologies’. 2014 Fourth Int. Conf. on Advanced Computing Communication Technologies, Rohtak, India, 2014, pp. 189196.
    17. 17)
      • 56. Suto, H., Mori, S., Kanno, M., et al: ‘Systematic study of the dopant-dependent properties of electrically programmable fuses with silicided poly-Si links through a series of V measurements’, IEEE Trans. Device Mater. Reliab., 2007, 7, (2), pp. 285297.
    18. 18)
      • 63. Nazari, S., Siegel, J., Stefanopoulou, A.: ‘Optimal energy management for a mild hybrid vehicle with electric and hybrid engine boosting systems’, IEEE Trans. Veh. Technol., 2019, 68, (4), pp. 33863399.
    19. 19)
      • 65. Saponara, S., Tisserand, P., Chassard, P., et al: ‘DC/DC converter integrated architecture for 48V supplies in micro/mild hybrid vehicle electrical engine control module’, Florence, Italy, 2016, pp. 15.
    20. 20)
      • 35. Liu, S., Chan, F.T.S., Yang, J., et al: ‘Understanding the effect of cloud computing on organizational agility: an empirical examination’, Int. J. Inf. Manage., 2018, 43, pp. 98111.
    21. 21)
      • 12. Fernandes, J.M., Almeida, M.: ‘Classification and comparison of Agile methods’. Seventh Int. Conf. on the Quality of Information and Communications Technology, Porto, Portugal, 2010, pp. 391396.
    22. 22)
      • 76. Ahmad, A., Alam, M.S., Chabaan, R.: ‘A comprehensive review of wireless charging technologies for electric vehicles’, IEEE Trans. Transp. Electrification, 2018, 4, (1), pp. 3863.
    23. 23)
      • 55. Suto, H., Mori, S., Kanno, M., et al: ‘Study of electrically programmable fuses through series of I–V measurements’, 2006 IEEE International Integrated Reliability Workshop Final Report, 2006, pp. 8388.
    24. 24)
      • 11. Aitken, A., Ilango, V.: ‘A comparative analysis of traditional software engineering and Agile software development’. 2013 46th Hawaii Int. Conf. on System Sciences, Wailea, Maui, HI, USA, 2013, pp. 47514760.
    25. 25)
      • 51. Rius, A., Garcia, A., Diaz, M.A.: ‘Optimization of modular wiring harnesses by means of regression models for temperature prediction of wire bundles’, in ‘Simulation and testing for vehicle technology’ (Springer, TU Berlin, 2016, 7th edn.), pp. 361373).
    26. 26)
      • 68. Seong, J., Yoon, S.W., Kim, M., et al: ‘Integrated motor-inverter power module for electric compressor (e-compressor) in 48V mild hybrid vehicles’. 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 2018, pp. 46594663.
    27. 27)
      • 32. Bostock, M., Ogievetsky, V., Heer, J.: ‘D3: data-driven documents’, IEEE Trans. Vis. Comput. Graphics, 2011, 17, (12), pp. 23012309.
    28. 28)
      • 8. EU: ‘Regulation (EC) No. 443/2009’, Official Journal of the European Union, 2009.
    29. 29)
      • 16. Silva da Silva, T., Martin, A., Maurer, F., et al: ‘User-centered design and agile methods: a systematic review’. 2011 Agile Conf., Salt Lake City, UT, USA, 2011, pp. 7786.
    30. 30)
      • 21. Keim, E.D., Kohlhammer, J., Ellis, G.: ‘Mastering the information age: solving problems with visual analytics’ (Eurographics Association, Germany, 2010).
    31. 31)
      • 48. Zhu, J., Zhuang, E., Ivanov, C., et al: ‘A data-driven approach to interactive visualization of power systems’, IEEE Trans. Power Syst., 2011, 26, (4), pp. 25392546.
    32. 32)
      • 4. SEAT S.A.: ‘2km y 42kg de cables: las neuronas y arterias del SEAT ateca’ (SEAT S.A., Barcelona, Spain, 2019). Available at https://bit.ly/2GIY7EP, Accessed on 20 February 2020.
    33. 33)
      • 72. Saponara, S., Lee, C.H.T., Wang, N.X., et al: ‘Electric drives and power chargers: recent solutions to improve performance and energy efficiency for hybrid and fully electric vehicles’, IEEE Veh. Technol. Mag., 2020, 15, (1), pp. 7383.
    34. 34)
      • 71. Saponara, S., Tisserand, P., Chassard, P., et al: ‘Design and measurement of integrated converters for belt-driven starter-generator in 48 V micro/mild hybrid vehicles’, IEEE Trans. Ind. Appl., 2017, 53, (4), pp. 39363949.
    35. 35)
      • 73. Reimers, J., Dorn-Gomba, L., Mak, C., et al: ‘Automotive traction inverters: current status and future trends’, IEEE Trans. Veh. Technol., 2019, 68, (4), pp. 33373350.
    36. 36)
      • 1. Rius, A.: ‘A novel optimization methodology of modular wiring harnesses in modern vehicles: weight reduction and safe operation’, Universitat Politècnica de Catalunya, Spain, 2017.
    37. 37)
      • 17. Hamm, M.J.: ‘Wireframing essentials’ (Packt Publishing, UK, 2014).
    38. 38)
      • 79. Nguyen, H.V., To, D., Lee, D.: ‘Onboard battery chargers for plug-in electric vehicles with dual functional circuit for low-voltage battery charging and active power decoupling’, IEEE Access, 2018, 6, pp. 7021270222.
    39. 39)
      • 42. Lendak, I., Erdeljan, A., Capko, D., et al: ‘Algorithms in electric power system one-line diagram creation: the soft computing approach’. Conf. Proc. – IEEE Int. Conf. on Systems, Man and Cybernetics, Istanbul, Turkey, 2010, pp. 28672873.
    40. 40)
      • 34. Lawanson, T., Karandeh, R., Cecchi, V., et al: ‘Improving power distribution system situational awareness using visual analytics’. Conf. Proc. – IEEE SOUTHEASTCON, 2018, St. Petersburg, FL, USA, April 2018, pp. 16.
    41. 41)
      • 26. Konyha, Z.: ‘Interactive visual analysis in automotive engineering design’, Vienna University of Technology, Austria, 2012.
    42. 42)
      • 69. Lee, S., Cherry, J., Safouting, M., et al: ‘Modeling and validation of 48 V mild hybrid lithium ion battery pack’, SAE Int. J. Altern. Powertrains, 2018, 7, (3), pp. 273287.
    43. 43)
      • 74. Salem, A., Narimani, M.: ‘A review on multiphase drives for automotive traction applications’, IEEE Trans. Transp. Electrification, 2019, 5, (4), pp. 13291348.
    44. 44)
      • 14. Harvie, D.P., Agah, A.: ‘Targeted scrum: applying mission command to Agile software development’, IEEE Trans. Softw. Eng., 2016, 42, (5), pp. 476489.
    45. 45)
      • 47. Cuffe, P., Keane, A.: ‘Visualizing the electrical structure of power systems’, IEEE Syst. J., 2017, 11, (3), pp. 18101821.
    46. 46)
      • 36. Eminoglu, U., Hocaoglu, M.H.: ‘Distribution systems forward/backward sweep-based power flow algorithms: a review and comparison study’, Electron. Power Compon. Syst, 2018, 37, pp. 91110.
    47. 47)
      • 7. Heinecke, H.: ‘Automotive system design challenges and potential’, Design, Autom. Test Europe, 2005, 1, pp. 656657.
    48. 48)
      • 78. Pinto, J.G., Monteiro, V., Gonçalves, H., et al: ‘Onboard reconfigurable battery charger for electric vehicles with traction-to-auxiliary mode’, IEEE Trans. Veh. Technol., 2014, 63, (3), pp. 11041116.
    49. 49)
      • 81. Schulze, T., Stavesand, J.: ‘Hardware-in-the-loop test process for modern E/E systems’, in ‘Simulation and testing for vehicle technology’ (Springer, TU Berlin, 2016, 7th edn.), pp. 343360.
    50. 50)
      • 58. Infineon: ‘Relay replacement within automotive power distribution’ (Infineon, Munich, Germany, 2019)’. Available at https://tinyurl.com/wk3w6xh, Accessed on 25 February 2020.
    51. 51)
      • 54. Suto, H., Mori, S., Kanno, M., et al: ‘Programming Conditions for silicided poly-Si or copper electrically programmable fuses’, 2007 IEEE International Integrated Reliability Workshop Final Report, 2007, pp. 8489.
    52. 52)
      • 23. Bertozzi, M., Bombini, L., Broggi, A., et al: ‘GOLD: a framework for developing intelligent-vehicle vision applications’, IEEE Intell. Syst., 2008, 23, (1), pp. 6971.
    53. 53)
      • 50. Sanchez-Hidalgo, M., Cano, M.: ‘A survey on visual data representation for smart grids control and monitoring’, Sustain. Energy, Grids Netw., 2018, 16, pp. 351369.
    54. 54)
      • 43. Lendak, I., Vidacs, A., Erdeljan, A.: ‘Electric power system one-line diagram generation with branch and bound algorithm’. 2012 IEEE Int. Energy Conf. and Exhibition, ENERGYCON 2012, Florence, Italy, 2012, pp. 947951.
    55. 55)
      • 40. Overbye, T.: ‘The role of power system visualization in enhancing power system security’, in ‘Real-time stability in power systems’ (Springer, Switzerland, 2014), pp. 387407).
    56. 56)
      • 13. Haghighatkhah, A., Banijamali, A., Pakanen, O., et al: ‘Automotive software engineering: a systematic mapping study’, J. Syst. Softw., 2017, 128, pp. 2555.
    57. 57)
      • 57. LEONI: ‘LEONiQ – intelligent solutions for the digital world’ (LEONI, Nuremberg, Germany, 2019). Available athttps://tinyurl.com/ujt6u6m, Accessed on 25 February 2020.
    58. 58)
      • 85. Zhang, H., Zhang, Y., Yin, C.: ‘Hardware-in-the-loop simulation of robust mode transition control for a series-parallel hybrid electric vehicle’, IEEE Trans. Veh. Technol., 2016, 65, (3), pp. 10591069.
    59. 59)
      • 18. Hartson, R., Pardha, P.: ‘The UX book’ (Elsevier, MA, USA, 2019, 2nd edn.).
    60. 60)
      • 20. Sedlmair, M.: ‘Visual analysis of in-car communication networks’, University of Munich, Germany, 2010.
    61. 61)
      • 84. Chen, Y., Chen, S., Zhang, T., et al: ‘Autonomous vehicle testing and validation platform: integrated simulation system with hardware in the loop’. 2018 IEEE Intelligent Vehicles Symp. (IV), Changshu, People's Republic of China, 2018, pp. 949956.
    62. 62)
      • 25. Holdgrün, T., Doric, I., Brandmeier, T., et al: ‘A virtual reality based approach for researching pedestrian to vehicle collisions’. 2018 IEEE Intelligent Vehicles Symp. (IV), Changshu, People's Republic of China, 2018, pp. 13181325.
    63. 63)
      • 52. Letor, R., Crisafulli, R.: ‘Smart power devices and new electronic fuses compliant with new e/e architecture for autonomous driving’. 2019 AEIT Int. Conf. of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE), Torino, Italy, 2019, pp. 16.
    64. 64)
      • 77. Adib, A., Afridi, K.K., Amirabadi, M., et al: ‘E-mobility advancements and challenges’, IEEE Access, 2019, 7, pp. 165226165240.
    65. 65)
      • 33. Tilkov, S., Vinoski, S.: ‘Node.js: using JavaScript to build high-performance network programs’, IEEE Internet Comput., 2010, 14, (6), pp. 8083.
    66. 66)
      • 28. Jessing, C., Stoll, D., Kuthada, T., et al: ‘New horizons of vehicle aerodynamics’, Proc. Inst. Mech. Eng. D, J. Autom. Eng., 2017, 231, (9), pp. 11901202.
    67. 67)
      • 80. Matheis, I., Dorsam, T., Hoffmann, W.: ‘Integrating a SiL into a HiL test platform’, in ‘Simulation and testing for vehicle technology’ (Springer, TU Berlin, 2016, 7th edn.), pp. 1520.
    68. 68)
      • 15. Goodwin, S., Dykes, J., Jones, S., et al: ‘Creative user-centered visualization design for energy analysts and modelers’, IEEE Trans. Vis. Comput. Graphics, 2013, 19, (12), pp. 25162525.
    69. 69)
      • 64. Winterborne, D., Shiref, M., Snow, S., et al: ‘Tc48: A low-cost …v integrated drive for mild hybrid electric vehicles’, J. Eng., 2019, 2019, (17), pp. 45904594.
    70. 70)
      • 61. European Commission: ‘Regulation (EC) No. 443/2009’ (European Commission, Brussels, Belgium, 2019). Available at https://ec.europa.eu/clima/policies/transport/vehicles/cars_en, Accessed on 2 March 2020.
    71. 71)
      • 62. Silva, C., Ross, M., Farias, T.: ‘Analysis and simulation strategies to reduce fuel consumption and emissions in conventional gasoline light-duty vehicles’, Energy Convers. Manage., 2009, 50, (2), pp. 215222.
    72. 72)
      • 45. Kober, F., Lorensi, L., Arantes, M., et al: ‘Automatic generation of one-line schematic diagrams of distribution networks’. 2015 Clemson University Power Systems Conf. (PSC), Clemson, SC, USA, 2015, pp. 15.
    73. 73)
      • 22. Stevens, J.A.: ‘Visualization of Complex automotive data: A tutorial’, IEEE Comput. Graph. Appl., 2007, 27, (6), pp. 8086.
    74. 74)
      • 49. Nigar, Y., Agalgaonkar, A.P., Ciufo, P.: ‘Visualising the effect of DG on voltage profile in Medium voltage distribution networks’. 2015 IEEE PES Asia-Pacific Power and Energy Engineering Conf. (APPEEC), Brisbane, QLD, Australia, 2015, pp. 15.
    75. 75)
      • 86. Zhang, Y., Lu, S., Yang, Y., et al: ‘Internet-distributed vehicle-in-the-loop simulation for HEVs’, IEEE Trans. Veh. Technol., 2018, 67, (5), pp. 37293739.
    76. 76)
      • 46. Teja, S.C., Yemula, P.K.: ‘Power network layout generation using force directed graph technique’. 2014 18th National Power Systems Conf., NPSC 2014, Guwahati, India, 2015, pp. 16.
    77. 77)
      • 31. Junyan, L., Shiguo, X., Yijie, L.: ‘Application research of embedded database SQLite’, Int. Forum Inf. Technol. Appl., 2009, 2, pp. 539543.
    78. 78)
      • 2. Huang, T., Chang, C., Lin, C., et al: ‘Intra-vehicle network routing algorithm for wiring weight and wireless transmit power minimization’. The 20th Asia and South Pacific Design Automation Conf., Chiba, Japan, 2015, pp. 273278.
    79. 79)
      • 44. Lin, R., Xing, J., Yang, H., et al: ‘Intelligent automatic layout of one-line diagrams for district electrical distribution network’. Asia-Pacific Power and Energy Engineering Conf., APPEEC, Chengdu, People's Republic of China, 2010, pp. 14.
    80. 80)
      • 53. Control Engineering: ‘Smart power distribution architecture benefits’ (Control Engineering, Downers Grove, IL, USA, 2019). Available athttps://tinyurl.com/wz297hp, Accessed on 28 February 2020.
    81. 81)
      • 39. Overbye, T.J., Weber, J.D.: ‘New methods for the visualization of electric power system information’. IEEE Symp. on Information Visualization 2000 (INFOVIS 2000) Proc., 2000, pp. 131–16.
    82. 82)
      • 29. Voland, P.: ‘Spatio-temporal visualization of automotive sensor data. A conceptual and implementational framework’. 2017 IEEE Region 10 Symp. (TENSYMP), Cochin, India, 2017, pp. 15.
    83. 83)
      • 5. Short, T.: ‘Electric power distribution handbook’ (CRC Press, USA, 2004).
    84. 84)
      • 75. Tu, H., Feng, H., Srdic, S., et al: ‘Extreme fast charging of electric vehicles: a technology overview’, IEEE Trans. Transp. Electrification, 2019, 5, (4), pp. 861878.
    85. 85)
      • 41. Mikkelsen, C., Johansson, J., Cooper, M.: ‘Visualization of power system data on situation overview displays’. 2012 16th Int. Conf. on Information Visualisation, Montpellier, France, 2012, pp. 188197.
    86. 86)
      • 70. Seong, J., Park, S., Kim, M.K., et al: ‘DBC-Packaged Inverter power module for integrated motor-inverter design used in 48 V mild hybrid starter-generator (MHSG) system’, IEEE Trans. Veh. Technol., 2019, 68, (12), pp. 1170411713.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2020.0047
Loading

Related content

content/journals/10.1049/iet-est.2020.0047
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address