access icon free Prognostic methods for proton exchange membrane fuel cell under automotive load cycling: a review

This study presents a review of prognostic methods applied to automotive proton exchange membrane fuel cell (PEMFC). PEMFC durability is strongly affected when it is subjected to automotive load cycling (ALC). ALC is normally composed of four operation modes such as start-up, idle, transient high-current demand and shutdown. All of these operation modes drastically change the internal variables of the system like temperature, pressure, relative humidity etc. causing degradation of the fuel cell components in a short time. Prognostic methods could be a possible solution to tackle the PEMFC's low durability issue because they allow predicting the remaining useful life of the system in order to apply preventive maintenance plans. Therefore, the objective of this study is to review the prognostic techniques applied to PEMFC under ALC. In the first part of this study, a summary of PEMFC degradation mechanisms caused by ALC is realised based on literature review. In the second part, the prognostic methods review for automotive PEMFCs is carried out and a general synthesis and future challenges are given in the third part of the study.

Inspec keywords: durability; remaining life assessment; preventive maintenance; proton exchange membrane fuel cells

Other keywords: automotive load cycling; automotive proton exchange membrane fuel cell; operation modes; prognostic methods review; automotive PEMFCs; prognostic techniques; high-current demand; PEMFC's low durability issue; ALC; fuel cell components; PEMFC degradation mechanisms; PEMFC durability; literature review

Subjects: Fuel cells; Maintenance and reliability; Fuel cells

References

    1. 1)
      • 12. Zhang, T., Wang, P., Chen, H., et al: ‘A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition’, Appl. Energy, 2018, 223, pp. 249262.
    2. 2)
      • 6. Piffard, M., Gerard, M., Fonseca, R.D., et al: ‘Sliding mode observer for proton exchange membrane fuel cell: automotive application’, J. Power Sources, 2018, 388, pp. 7177.
    3. 3)
      • 24. Chen, H., Zhao, X., Zhang, T., et al: ‘The reactant starvation of the proton exchange membrane fuel cells for vehicular applications: a review’, Energy Convers. Manage., 2019, 182, pp. 282298.
    4. 4)
      • 43. Pei, P., Chen, D., Wu, Z., et al: ‘Nonlinear methods for evaluating and online predicting the lifetime of fuel cells’, Appl. Energy, 2019, 254, p. 113730.
    5. 5)
      • 20. Wu, Y., Breaz, E., Gao, F., et al: ‘A modified relevance vector machine for PEM fuel-cell stack aging prediction’, IEEE Trans. Ind. Appl., 2016, 52, (3), pp. 25732581.
    6. 6)
      • 14. Kocha, S.S.: ‘Electrochemical degradation: electrocatalyst and support durability’. In: ‘Polymer electrolyte fuel cell degradation’ (Academic Press, Oxford, 2012), pp. 89214.
    7. 7)
      • 41. Zhang, D., Baraldi, P., Cadet, C., et al: ‘An ensemble of models for integrating dependent sources of information for the prognosis of the remaining useful life of proton exchange membrane fuel cells’, Mech. Syst. Signal Process., 2019, 124, pp. 479501.
    8. 8)
      • 55. Chen, K., Laghrouche, S., Djerdir, A.: ‘Degradation model of proton exchange membrane fuel cell based on a novel hybrid method’, Appl. Energy, 2019, 252, p. 113439.
    9. 9)
      • 23. Breaz, E., Gao, F., Miraoui, A., et al: ‘A short review of aging mechanism modeling of proton exchange membrane fuel cell in transportation applications’. IECON 2014–40th Annual Conf. IEEE Industrial Electronics Society, (Dallas) USA, 2014, pp. 16.
    10. 10)
      • 67. Ma, R., Breaz, E., Liu, C., et al: ‘Data-driven prognostics for PEM fuel cell degradation by long short-term memory network’. 2018 IEEE Transportation Electrification Conf. and Expo (ITEC), (Long Beach) USA, 2018, pp. 102107.
    11. 11)
      • 47. Han, J., Han, J., Yu, S.: ‘Investigation of FCVs durability under driving cycles using a model-based approach’, J. Energy Storage, 2020, 27, p. 101169.
    12. 12)
      • 42. Pei, P., Chang, Q., Tang, T.: ‘A quick evaluating method for automotive fuel cell lifetime’, Int. J. Hydrog. Energy, 2008, 33, (14), pp. 38293836.
    13. 13)
      • 31. Shimoi, R., Aoyama, T., Iiyama, A.: ‘Development of fuel cell stack durability based on actual vehicle test data: current status and future work’, SAE Int. J. Engines, 2009, 2, (1), pp. 960970.
    14. 14)
      • 53. Li, Z., Jemei, S., Gouriveau, R., et al: ‘Remaining useful life estimation for PEMFC in dynamic operating conditions’. 2016 IEEE Vehicle Power and Propulsion Conf. (VPPC), (Hangzhou) China, 2016, pp. 16.
    15. 15)
      • 5. Zhang, X., Yang, D., Luo, M., et al: ‘Load profile based empirical model for the lifetime prediction of an automotive PEM fuel cell’, Int. J. Hydrog. Energy, 2017, 42, (16), pp. 1186811878.
    16. 16)
      • 35. Shen, Y.: ‘Mechanical degradation of membrane electrode assemblies in proton exchange membrane fuel cells’ (University of Waterloo, Waterloo, Ontario, Canada,, 2017).
    17. 17)
      • 8. Yasuda, K., Taniguchi, A., Akita, T., et al: ‘Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling’, Phys. Chem. Chem. Phys., 2006, 8, (6), pp. 746752.
    18. 18)
      • 50. Ma, R., Yang, T., Breaz, E., et al: ‘Data-driven proton exchange membrane fuel cell degradation predication through deep learning method’, Appl. Energy, 2018, 231, pp. 102115.
    19. 19)
      • 10. Randrianarizafy, B., Schott, P., Gerard, M., et al: ‘Modelling carbon corrosion during a PEMFC startup: simulation of mitigation strategies’, Energies, 2020, 13, (9), p. 2338.
    20. 20)
      • 64. Celaya, J., Kulkarni, C., Biswas, G., et al: ‘A model-based prognostics methodology for electrolytic capacitors based on electrical overstress accelerated aging’. Annual Conf. Prognostics and Health Management Society, Montreal, Canada, 2011, vol. 2, no. (010), pp. 19.
    21. 21)
      • 32. Zhao, J., Li, X.: ‘A review of polymer electrolyte membrane fuel cell durability for vehicular applications: degradation modes and experimental techniques’, Energy Convers. Manage., 2019, 199, p. 112022.
    22. 22)
      • 62. Jouin, M., Gouriveau, R., Hissel, D., et al: ‘Prognostics of PEM fuel cells under a combined heat and power profileõ’, IFAC-PapersOnLine, 2015, 48, (3), pp. 2631.
    23. 23)
      • 66. Lin, R., Li, B., Hou, Y.P., et al: ‘Investigation of dynamic driving cycle effect on performance degradation and micro-structure change of PEM fuel cell’, Int. J. Hydrog. Energy, 2009, 34, (5), pp. 23692376.
    24. 24)
      • 36. Borup, R., Meyers, J., Pivovar, B., et al: ‘Scientific aspects of polymer electrolyte fuel cell durability and degradation’, Chem. Rev., 2007, 107, (10), pp. 39043951.
    25. 25)
      • 56. Sikorska, J.Z., Hodkiewicz, M., Ma, L.: ‘Prognostic modelling options for remaining useful life estimation by industry’, Mech. Syst. Signal Process., 2011, 25, (5), pp. 18031836.
    26. 26)
      • 59. ISO. ‘Condition monitoring and diagnosis of machines - prognostics - part 1: General guidelines: International standards organization’, 2004.
    27. 27)
      • 46. Mayur, M., Strahl, S., Husar, A., et al: ‘A multi-timescale modeling methodology for PEMFC performance and durability in a virtual fuel cell car’, Int. J. Hydrog. Energy, 2015, 40, (46), pp. 1646616476.
    28. 28)
      • 27. Hartnig, C., Schmidt, T.J.: ‘On a new degradation mode for high-temperature polymer electrolyte fuel cells: how bipolar plate degradation affects cell performance’, Electrochim. Acta, 2011, 56, (11), pp. 42374242.
    29. 29)
      • 17. Morando, S., Jemei, S., Hissel, D., et al: ‘ANOVA method applied to proton exchange membrane fuel cell ageing forecasting using an echo state network’, Math. Comput. Simul., 2017, 131, pp. 283294.
    30. 30)
      • 9. Chandesris, M., Vincent, R., Guetaz, L., et al: ‘Membrane degradation in PEM fuel cells: from experimental results to semi-empirical degradation laws’, Int. J. Hydrog. Energy, 2017, 42, (12), pp. 81398149.
    31. 31)
      • 28. de Bruijn, F.A., Dam, V.A.T., Janssen, G.J.M.: ‘Review: durability and degradation issues of PEM fuel cell components’, Fuel Cells, 2008, 8, (1), pp. 322.
    32. 32)
      • 21. Chen, H., Pei, P., Song, M.: ‘Lifetime prediction and the economic lifetime of proton exchange membrane fuel cells’, Appl. Energy, 2015, 142, pp. 154163.
    33. 33)
      • 49. Javed, K., Gouriveau, R., Zerhouni, N., et al: ‘PEM fuel cell prognostics under variable load: a data-driven ensemble with new incremental learning’. 2016 Int. Conf. on Control, Decision and Information Technologies (CoDIT), (St. Julian's) Malta, 2016, pp. 252257.
    34. 34)
      • 3. Rodríguez-Castellanos, A., Daz-Bernabé, J.L., Citalán-Cigarroa, S., et al: ‘Development and applications of portable systems based on conventional PEM fuel cells’, Portable Hydrog. Energy Syst., 2018, 1, pp. 91106.
    35. 35)
      • 48. Mayur, M., Gerard, M., Schott, P., et al: ‘Lifetime prediction of a polymer electrolyte membrane fuel cell under automotive load cycling using a physically-based catalyst degradation model’, Energies, 2018, 11, (8), p. 2054.
    36. 36)
      • 30. Ge, S., Wang, C.Y.: ‘Liquid water formation and transport in the PEFC anode’, J. Electrochem. Soc., 2007, 154, (10), p. B998.
    37. 37)
      • 25. Liu, H., Chen, J., Hissel, D., et al: ‘Prognostics methods and degradation indexes of proton exchange membrane fuel cells: A review’, Renew. Sust. Energy Rev., 2020, 123, p. 109721.
    38. 38)
      • 44. Lu, L., Ouyang, M., Huang, H., et al: ‘A semi-empirical voltage degradation model for a low-pressure proton exchange membrane fuel cell stack under bus city driving cycles’, J. Power Sources, 2007, 164, (1), pp. 306314.
    39. 39)
      • 18. Javed, K., Gouriveau, R., Zerhouni, N., et al: ‘Prognostics of proton exchange membrane fuel cells stack using an ensemble of constraints based connectionist networks’, J. Power Sources, 2016, 324, pp. 745757.
    40. 40)
      • 65. Jha, M.S., Bressel, M., Ould-Bouamama, B., et al: ‘Particle filter based hybrid prognostics of proton exchange membrane fuel cell in bond graph framework’, Comput. Chem. Eng., 2016, 95, pp. 216230.
    41. 41)
      • 52. Chen, K., Laghrouche, S., Djerdir, A.: ‘Degradation prediction of proton exchange membrane fuel cell based on grey neural network model and particle swarm optimization’, Energy Convers. Manage., 2019, 195, pp. 810818.
    42. 42)
      • 60. Jacome, A., Hissel, D., Heiries, V., et al: ‘A review of model-based prognostic for proton exchange membrane fuel cell under automotive load cycling’. 2019 IEEE Vehicle Power and Propulsion Conf. (VPPC), Hanoi, Vietnam, 2019, pp. 15.
    43. 43)
      • 40. Chen, K., Laghrouche, S., Djerdir, A.: ‘Fuel cell health prognosis using unscented Kalman filter: postal fuel cell electric vehicles case study’, Int. J. Hydrog. Energy, 2019, 44, (3), pp. 19301939.
    44. 44)
      • 13. Yousfi-Steiner, N., Moçotéguy, P., Candusso, D., et al: ‘A review on polymer electrolyte membrane fuel cell catalyst degradation and starvation issues: causes, consequences and diagnostic for mitigation’, J. Power Sources, 2009, 194, (1), pp. 130145.
    45. 45)
      • 61. Bressel, M., Hilairet, M., Hissel, D., et al: ‘Extended Kalman filter for prognostic of proton exchange membrane fuel cell’, Appl. Energy, 2016, 164, pp. 220227.
    46. 46)
      • 2. Kim, B.J., Sohn, Y.J., Kim, M.J., et al: ‘Development of 5 kw PEM fuel cell system for stationary applications’. 20th World Hydrogen Energy Conf. (WHEC 2014), Gwangju, South Korea, 2014, 2, pp. 12561259.
    47. 47)
      • 19. Silva, R.E., Gouriveau, R., Jemeï, S., et al: ‘Proton exchange membrane fuel cell degradation prediction based on adaptive neuro-fuzzy inference systems’, Int. J. Hydrog. Energy, 2014, 39, (21), pp. 1112811144.
    48. 48)
      • 26. Aricò, A., Stassi, A., Modica, E., et al: ‘Performance and degradation of high temperature polymer electrolyte fuel cell catalysts’, J. Power Sources, 2008, 178, (2), pp. 525536.
    49. 49)
      • 39. Bressel, M., Hilairet, M., Hissel, D., et al: ‘Fuel cell remaining useful life prediction and uncertainty quantification under an automotive profile’. IECON 2016-42nd Annual Conf. of the IEEE Industrial Electronics Society, (Florence) Italy, 2016, pp. 54775482.
    50. 50)
      • 4. Satyapal, S.: ‘2017 Annual progress report: DOE hydrogen and fuel cells program’. (National Renewable Energy Lab.(NREL), Golden, CO (United States), 2018.
    51. 51)
      • 37. Holton, O.T., Stevenson, J.W.: ‘The role of platinum in proton exchange membrane fuel cells’, Platinum Met. Rev., 2013, 57, (4), pp. 259271.
    52. 52)
      • 33. Jouin, M.: ‘Contribution au pronostic d'une pile à combustible de type PEMFC-approche par filtrage particulaire’ (Université Bourgone, Franche-Comté, 2015).
    53. 53)
      • 16. Jouin, M., Gouriveau, R., Hissel, D., et al: ‘Prognostics of PEM fuel cell in a particle filtering framework’, Int. J. Hydrog. Energy, 2014, 39, (1), pp. 481494.
    54. 54)
      • 38. Shen, J., Xu, L., Chang, H., et al: ‘Partial flooding and its effect on the performance of a proton exchange membrane fuel cell’, Energy Convers. Manage., 2020, 207, p. 112537.
    55. 55)
      • 34. Zhang, H., Haas, H., Hu, J., et al: ‘The impact of potential cycling on PEMFC durability’, J. Electrochem. Soc., 2013, 160, (8), pp. F840F847.
    56. 56)
      • 7. Laribi, S., Mammar, K., Sahli, Y., et al: ‘Analysis and diagnosis of PEM fuel cell failure modes (flooding & drying) across the physical parameters of electrochemical impedance model: using neural networks method’, Sustain. Energy Technol. Assessments, 2019, 34, pp. 3542.
    57. 57)
      • 54. Li, Z., Zheng, Z., Outbib, R.: ‘Adaptive prognostic of fuel cells by implementing ensemble echo state networks in time-varying model space’, IEEE Trans. Ind. Electron., 2019, 67, (1), pp. 379389.
    58. 58)
      • 57. Brotherton, T., Grabill, P., Wroblewski, D., et al: ‘A testbed for data fusion for engine diagnostics and prognostics’. Proc., IEEE Aerospace Conf., Big Sky, MT, USA., 2002.
    59. 59)
      • 29. Hou, Y., Hao, D., Shen, J., et al: ‘Effect of strengthened road vibration on performance degradation of PEM fuel cell stack’, Int. J. Hydrog. Energy, 2016, 41, (9), pp. 51235134.
    60. 60)
      • 15. Hu, Z., Xu, L., Li, J., et al: ‘A cell interaction phenomenon in a multi-cell stack under one cell suffering fuel starvation’, Energy Convers. Manage., 2018, 174, pp. 465474.
    61. 61)
      • 1. Tan, H., Zhang, H., Peng, J., et al: ‘Energy management of hybrid electric bus based on deep reinforcement learning in continuous state and action space’, Energy Convers. Manage., 2019, 195, pp. 548560.
    62. 62)
      • 58. Katipamula, S., Brambley, M.R.: ‘Methods for fault detection, diagnostics, and prognostics for building systems—a review, part I’, HVAC&R. Res., 2005, 11, (1), pp. 325.
    63. 63)
      • 51. Vichard, L., Harel, F., Ravey, A., et al: ‘Degradation prediction of PEM fuel cell based on artificial intelligence’, Int. J. Hydrog. Energy, 2020, 45, pp. 1495314963.
    64. 64)
      • 45. Hu, Z., Xu, L., Li, J., et al: ‘A reconstructed fuel cell life-prediction model for a fuel cell hybrid city bus’, Energy Convers. Manage., 2018, 156, pp. 723732.
    65. 65)
      • 63. Jouin, M., Gouriveau, R., Hissel, D., et al: ‘Joint particle filters prognostics for proton exchange membrane fuel cell power prediction at constant current solicitation’, IEEE Trans. Reliab., 2016, 65, (1), pp. 336349.
    66. 66)
      • 22. Jung, W.S.: ‘Study on durability of pt supported on graphitized carbon under simulated start-up/shut-down conditions for polymer electrolyte membrane fuel cells’, J. Energy Chem., 2018, 27, (1), pp. 326334.
    67. 67)
      • 11. Nandjou, F., Poirot-Crouvezier, J.P., Chandesris, M., et al: ‘Impact of heat and water management on proton exchange membrane fuel cells degradation in automotive application’, J. Power Sources, 2016, 326, pp. 182192.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2020.0045
Loading

Related content

content/journals/10.1049/iet-est.2020.0045
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading