access icon free Effect of battery voltage variation on electric vehicle performance driven by induction machine with optimal flux-weakening strategy

Electric vehicle (EV) traction drives should be associated with flux-weakening (FW) techniques wide-range speed demands. In this study, the EV performance with an optimal FW strategy is studied in relation to the battery voltage variation caused by cell state-of-charge and temperature changes. The results show that the battery suffers from a voltage reduction by larger internal resistance as the temperature decreases. Moreover, the higher current is required for activating the FW process. However, the inner resistance growth produces more heat inside the cell that affects the battery electrical parameters as well as the system. To assess this effect by simulation, an improved electro-thermal model of lithium-ion battery ls dynamically coupled to the optimal FW strategy. In this model, all the electrical parameters are temperature-dependent deduced from experimental measurements of an off-road EV. The simulation results confirm the effect of the cell self-heating on the battery voltage at sub-zero temperatures. The higher battery voltage can support the FW operation at −10°C for more 1200 s under the modified NEDC driving cycle, whereas the motor drive voltage is saturated after 1118 s by using the simple battery model without thermal effects.

Inspec keywords: battery powered vehicles; hybrid electric vehicles; secondary cells; electric vehicles; traction motor drives; motor drives

Other keywords: lithium-ion battery ls; off-road EV; optimal FW strategy; battery suffers; higher battery voltage; improved electro-thermal model; cell state-of-charge; larger internal resistance; induction machine; time 1118.0 s; time 1200.0 s; sub-zero temperatures; FW process; battery electrical parameters; optimal flux-weakening strategy; inner resistance growth; flux-weakening techniques wide-range speed demands; electric vehicle performance; voltage reduction; battery voltage variation; motor drive voltage; thermal effects; temperature -10.0 degC; simple battery model; EV performance; FW operation; traction drives

Subjects: Control of electric power systems; Secondary cells; Drives; Optimisation techniques; Secondary cells; Transportation

References

    1. 1)
      • 8. Tippmann, S., Walper, D., Balboa, L., et al: ‘Low-temperature charging of lithium-ion cells part I: electrochemical modeling and experimental investigation of degradation behavior’, J. Power Sources, 2014, 252, pp. 305316.
    2. 2)
      • 5. Kao, Y.-T., Liu, C.-H.: ‘Analysis and design of microprocessor-based vector-controlled induction motor drives’, IEEE Trans. Ind. Electron., 1992, 39, (1), pp. 4654.
    3. 3)
      • 22. Messier, P., Nguyễn, B., Lebel, F., et al: ‘Disturbance observer-based state-of-charge estimation for Li-ion battery used in light electric vehicles’, J. Energy Storage, 2020, 27, (July 2019), p. 101144.
    4. 4)
      • 14. Watrin, N., Roche, R., Ostermann, H., et al: ‘Multiphysical lithium-based battery model for use in state-of-charge determination’, IEEE Trans. Veh. Technol., 2012, 61, (8), pp. 34203429.
    5. 5)
      • 17. Bouscayrol, A., Hautier, J.-P., Lemaire-Semail, B.: ‘Graphic formalisms for the control of multi-physical energetic systems: COG and EMR’, in Roboam, X. (Ed.): ‘Systemic Design Methodologies for Electrical Energy Systems’ (ISTE Ltd., England, 2013), pp. 89124.
    6. 6)
      • 3. Peter, V.: ‘Vector control of AC machines' (Oxford University Press, UK, 1990).
    7. 7)
      • 23. German, R., Mondoha, A., Trovao, J.P., et al: ‘Driving range evolution of an EV regarding cumulated hours of operation’. 2019 IEEE Vehicle Power Propulsion Conf. VPPC 2019 - Proc., 2019.
    8. 8)
      • 7. Jaguemont, J., Boulon, L., Venet, P., et al: ‘Lithium-Ion battery aging experiments at subzero temperatures and model development for capacity fade estimation’, IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 43284343.
    9. 9)
      • 16. Nguyen, C.T.P., Nguyen, B.-H., Trovão, J.P.F., et al: ‘Impact of battery temperature on motor flux weakening operations in electric vehicles’. 2019 IEEE Veh. Power Propuls. Conf., Hanoi, Vietnam, 2019, pp. 16.
    10. 10)
      • 20. Andre, D., Meiler, M., Steiner, K., et al: ‘Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. II: modelling’, J. Power Sources, 2011, 196, (12), pp. 53345341.
    11. 11)
      • 18. Pinsona, M.B., Bazant, M.Z.: ‘Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction’, J. Electrochem. Soc., 2013, 160, (2), pp. A243A250.
    12. 12)
      • 24. Blondin, M.J., Trovão, J.P.: ‘Soft-computing techniques for cruise controller tuning for an off-road electric vehicle’, IET Electr. Syst. Transp., 2019, 9, pp. 196205.
    13. 13)
      • 13. Do, D.V., Forgez, C., El Kadri Benkara, K., et al: ‘Impedance observer for a Li-ion battery using Kalman filter’, IEEE Trans. Veh. Technol., 2009, 58, (8), pp. 39303937.
    14. 14)
      • 12. Perez, H.E., Hu, X., Dey, S., et al: ‘Optimal charging of Li-Ion batteries with coupled electro-thermal-aging dynamics’, IEEE Trans. Veh. Technol., 2017, 66, (9), pp. 77617770.
    15. 15)
      • 11. Hu, X., Lin, S., Stanton, S., et al: ‘A foster network thermal model for HEV/EV battery modeling’, IEEE Trans. Ind. Appl., 2011, 47, (4), pp. 16921699.
    16. 16)
      • 2. Joetten, R., Schierling, H.: ‘Control of the induction machine in the field weakening range’, IFAC Control Power Electron. Electr. Drives, 1983, 16, (16), pp. 297304.
    17. 17)
      • 15. Jaguemont, J., Boulon, L., Dubé, Y.: ‘Characterization and modeling of a hybrid-electric-vehicle lithium-ion battery pack at low temperatures’, IEEE Trans. Veh. Technol., 2016, 65, (1), pp. 114.
    18. 18)
      • 21. Westerhoff, U., Kroker, T., Kurbach, K., et al: ‘Electrochemical impedance spectroscopy based estimation of the state of charge of lithium-ion batteries’, J. Energy Storage, 2016, 8, pp. 244256.
    19. 19)
      • 9. Vidal, C., Gross, O., Gu, R., et al: ‘XEV li-Ion battery low-temperature effects-review’, IEEE Trans. Veh. Technol., 2019, 68, (5), pp. 45604572.
    20. 20)
      • 19. Zhang, S.S., Xu, K., Jow, T.R.: ‘The low temperature performance of Li-ion batteries’, J. Power Sources, 2003, 115, (1), pp. 137140.
    21. 21)
      • 10. Forgez, C., Vinh Do, D., Friedrich, G., et al: ‘Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery’, J. Power Sources, 2010, 195, (9), pp. 29612968.
    22. 22)
      • 4. Kim, S.H., Sul, S.K.: ‘Maximum torque control of an induction machine in the field weakening region’, IEEE Trans. Ind. Appl., 1995, 31, (4), pp. 787794.
    23. 23)
      • 1. Murphy, J.M.D., Turnbull, F.G.: ‘Power electronic control of AC motors’ (Pergamon, UK, 1988).
    24. 24)
      • 6. Seok, J.K., Sul, S.K.: ‘Optimal flux selection of an induction machine for maximum torque operation in flux-weakening region’, IEEE Trans. Power Electron., 1999, 14, (4), pp. 700708.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2020.0013
Loading

Related content

content/journals/10.1049/iet-est.2020.0013
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading