access icon free Brake force distributions optimised with regard to energy recovery for electric vehicles with single front-wheel drive or rear-wheel drive

Energy recovery by means of braking with the electric machine helps to extend the cruising range of electric vehicles. By optimising the recuperation system, the total energy efficiency is increased. In general, using a usual brake force distribution the capability for recuperation is not equal for every type of drive train. Usually, four-wheel drives are advantageous in comparison to drive trains with only one driven axle. Regarding the single drives, generally, a front-wheel drive provides a higher capability for recuperation than a rear-wheel drive. This is mainly due to the dynamic axle load shift, which occurs during decelerations. In order to increase the energy recovery of electric vehicles with single drive, an adaptive brake force distribution is presented and compared with other brake force distributions in this study. It uses the knowledge of the currently available adhesion coefficient between tyre and road. The positive effect on the recuperation without impairing the braking performance on a straight road is demonstrated based on simulations. In curves, the lateral forces additionally need to be considered to guarantee the stability of the vehicle, especially relating to electric vehicles having a rear-wheel drive.

Inspec keywords: electric vehicles; adhesion; mechanical stability; axles; wheels; braking; brakes; tyres; vehicle dynamics; road vehicles

Other keywords: electric machine; electric vehicles; rear-wheel drive; brake force distributions; single drive; total energy efficiency; drive train; braking performance; adaptive brake force distribution; single front-wheel drive; energy recovery; four-wheel drives

Subjects: Other specific mechanical properties (mechanical engineering); Transportation; Vehicle mechanics; Transportation industry; Mechanical components; Buckling and instability (mechanical engineering)

References

    1. 1)
      • 25. Zhang, X., Goehlich, D., Li, J.: ‘Energy-efficient toque allocation design of traction and regenerative braking for distributed drive electric vehicles’, IEEE Trans. Veh. Technol., 2018, 67, (1), pp. 285295.
    2. 2)
      • 8. Mutoh, N.: ‘Driving and braking torque distribution methods for front- and rear-wheel-independent drive-type electric vehicles on roads with low friction coefficient’, IEEE Trans. Ind. Electron., 2012, 59, (10), pp. 39193933.
    3. 3)
      • 1. Spichartz, P., Xu, B., Sourkounis, C.: ‘Optimized recuperation strategies for single front and rear wheel drives’. 2017 IEEE Vehicle Power and Propulsion Conf. (VPPC), Belfort, Fance, 2017, pp. 16.
    4. 4)
      • 28. Spichartz, P., Bokker, T., Sourkounis, C.: ‘Comparison of electric vehicles with single drive and four wheel drive system concerning regenerative braking’. 2017 Twelfth Int. Conf. on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 2017, pp. 17.
    5. 5)
      • 31. Stellet, J.E., Suchaneck, A., Giessler, M., et al: ‘Fahrbahnreibwertschaetzung mit optimaler linearer Parametrierung’, at – Automatisierungstechnik, 2014, 62, (8), pp. 570581.
    6. 6)
      • 17. Ko, J., Ko, S., Son, H., et al: ‘Development of brake system and regenerative braking cooperative control algorithm for automatic-transmission-based hybrid electric vehicles’, IEEE Trans. Veh. Technol., 2015, 64, (2), pp. 431440.
    7. 7)
      • 34. Isermann, R.: ‘Fahrdynamikregelung’ (Friedr. Vieweg & Sohn Verlag, Wiesbaden, 2006).
    8. 8)
      • 20. Gao, Y., Chu, L., Ehsani, M.: ‘Design and control principles of hybrid braking system for EV, HEV and FCV’. 2007 IEEE Vehicle Power and Propulsion Conf., Arlington, TX, United States, 2007, pp. 384391.
    9. 9)
      • 30. Luo, N., Jiang, J., Yu, A.: ‘Research on the control strategy of the regenerative braking system’. 2014 Int. Conf. on Mechatronics and Control (ICMC), Jinzhou, China, 2014, pp. 25142517.
    10. 10)
      • 24. Fujimoto, H., Harada, S.: ‘Model-based range extension control system for electric vehicles with front and rear driving-braking force distributions’, IEEE Trans. Ind. Electron., 2015, 62, (5), pp. 32453254.
    11. 11)
      • 12. Pan, S., Song, Z., Wang, X.: ‘Electro-mechanical braking force distribution strategy for electric vehicle’. 2015 IEEE Int. Conf. on Communication Problem-Solving (ICCP), Guilin, China, 2015, pp. 387390.
    12. 12)
      • 3. Spichartz, P., Dost, P., Sourkounis, C.: ‘Recuperation strategies for electric vehicles’. 2014 Ninth Int. Conf. on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Monaco, 2014, pp. 17.
    13. 13)
      • 13. Xu, G., Li, W., Xu, K., et al: ‘An intelligent regenerative braking strategy for electric vehicles’, Energies, 2011, 4, (9), pp. 14611477.
    14. 14)
      • 19. Xu, J., Zhang, X.: ‘Optimization algorithm for vehicle braking force distribution of front and rear axles based on brake strength’. 2016 12th World Congress on Intelligent Control and Automation (WCICA), Guilin, China, 2016, pp. 33533360.
    15. 15)
      • 15. Tao, Y., Xie, X., Zhao, H., et al: ‘A regenerative braking system for electric vehicle with four in-wheel motors based on fuzzy control’. 2017 36th Chinese Control Conf. (CCC), 2017, pp. 42884293.
    16. 16)
      • 2. Spichartz, P., Sourkounis, C.: ‘Measurement of braking energy recuperation in electric vehicles’. 2013 15th European Conf. on Power Electronics and Applications (EPE), Lille, France, 2013, pp. 19.
    17. 17)
      • 5. Jaime, R.-P., Kaestner, F., Erban, A., et al: ‘Regelalgorithmen fuer Rekuperation und Traktion bei Elektrofahrzeugen (‘control algorithms for recuperation and traction of electric vehicles’)’, ATZ elektronik, 2014, 9, (2), pp. 1217.
    18. 18)
      • 27. Spichartz, P., Sourkounis, C.: ‘Influence of the drive train topology and the center of mass on the regenerative braking in electric vehicles’. 2017 Twelfth Int. Conf. on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 2017, pp. 18.
    19. 19)
      • 32. Kaldenbach, M., Spichartz, P., Sourkounis, C.: ‘Assessment of methods for estimating the maximum coefficient of friction between road and tire’. 2017 IEEE Vehicle Power and Propulsion Conf. (VPPC), Belfort, France, 2017, pp. 16.
    20. 20)
      • 11. Xu, G., Xu, K., Zheng, C., et al: ‘Fully electrified regenerative braking control for deep energy recovery and maintaining safety of electric vehicles’, IEEE Trans. Veh. Technol., 2016, 65, (3), pp. 11861198.
    21. 21)
      • 29. Haken, K.-L.: ‘Grundlagen der Kraftfahrzeugtechnik’ (Carl Hanser Verlag, Munich, 2015).
    22. 22)
      • 21. Wei, Z., Xu, J., Halim, D.: ‘Study of HEV electro-mechanical hybrid braking system control strategy’. 2015 IEEE Vehicle Power and Propulsion Conf. (VPPC), Montreal, QC, Canada, 2015, pp. 15.
    23. 23)
      • 6. Ivanov, V., Savitski, D., Shyrokau, B.: ‘A survey of traction control and antilock braking systems of full electric vehicles with individually controlled electric motors’, IEEE Trans. Veh. Technol., 2015, 64, (9), pp. 38783896.
    24. 24)
      • 4. Spichartz, P., Dost, P., Sourkounis, C.: ‘Examination and measurement of range extension using different recuperation modes in electric vehicles’. 2014 IEEE Industry Application Society Annual Meeting, Vancouver, BC, Canada, 2014, pp. 19.
    25. 25)
      • 22. UNECE, Agreement Concerning the Adoption of Uniform Technical Prescriptions for Wheeled Vehicles, Equipment and Parts which can be Fitted and/or be Used on Wheeled Vehicles and the Conditions for Reciprocal Recognition of Approvals Granted on the Basis of these Prescriptions – Addendum 12: Regulation No. 13, 4 August 2011.
    26. 26)
      • 7. Yuan, L., Chen, H., Ren, B., et al: ‘Model predictive slip control for electric vehicle with four in-wheel motors’. 2015 34th Chinese Control Conf. (CCC), Hangzhou, China, 2015, pp. 78957900.
    27. 27)
      • 23. Paul, D., Velenis, E., Cao, D., et al: ‘Optimal mu-estimation-based regenerative braking strategy for an AWD HEV’, IEEE Trans. Transp. Electrification, 2017, 3, (1), pp. 249258.
    28. 28)
      • 18. Nadeau, J., Micheau, P., Boisvert, M.: ‘Ideal regenerative braking torque in collaboration with hydraulic brake system’. 2017 Twelfth Int. Conf. on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 2017, pp. 15.
    29. 29)
      • 14. Peng, D., Zhang, Y., Yin, C.L., et al: ‘Combined control of a regenerative braking and antilock braking system for hybrid electric vehicles’, Int. J. Autom. Technol., 2008, 9, (6), pp. 749757.
    30. 30)
      • 35. Bian, M., Chen, L., Luo, Y., et al: ‘A dynamic model for tire/road friction estimation under combined longitudinal/lateral slip situation’. SAE Technical Paper. SAE International, 2014.
    31. 31)
      • 26. Hancock, M., Assadian, F.: ‘Impact of regenerative braking on vehicle stability’. IET Hybrid Vehicle Conf., Coventry, UK, 2006, pp. 173184.
    32. 32)
      • 10. Zhai, L., Sun, T., Wang, J.: ‘Electronic stability control based on motor driving and braking torque distribution for a four in-wheel motor drive electric vehicle’, IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 47264739.
    33. 33)
      • 39. Breuer, B., Bill, K.-H.: ‘Bremsenhandbuch’ (Springer Vieweg Verlag, Wiesbaden, 2017, 5th edn.).
    34. 34)
      • 9. Dadashnialehi, A., Bab-Hadiashar, A., Cao, Z., et al: ‘Intelligent sensorless antilock braking system for brushless in-wheel electric vehicles’, IEEE Trans. Ind. Electron., 2015, 62, (3), pp. 16291638.
    35. 35)
      • 37. Wu, J., Wang, Q., Wei, X., et al: ‘Studies on improving vehicle handling and lane keeping performance of closed-loop driver-vehicle system with integrated chassis control’, Math. Comput. Simul., 2010, 80, (12), pp. 22972308.
    36. 36)
      • 16. Satzger, C., de Castro, R.: ‘Predictive brake control for electric vehicles’, IEEE Trans. Veh. Technol., 2018, 67, (2), pp. 977990.
    37. 37)
      • 33. Castro, R.D., Araujo, R.E., Freitas, D.: ‘Real-time estimation of tyre-road friction peak with optimal linear parameterisation’, IET Control Theory Applic., 2012, 6, (14), pp. 22572268.
    38. 38)
      • 36. Schramm, D., Hiller, M., Bardini, R.: ‘Modellbildung und Simulation der Dynamik von Kraftfahrzeugen’ (Springer Vieweg Verlag, Berlin, Heidelberg, 2018, 3rd edn.).
    39. 39)
      • 38. Spichartz, P., Sourkounis, C.: ‘Comparison of drive train topologies for electric vehicles with regard to regenerative braking’. 2019 Fourteenth Int. Conf. on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, May 2019. (accepted paper).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2019.0039
Loading

Related content

content/journals/10.1049/iet-est.2019.0039
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading