access icon free Design of robust control for a motor in electric vehicles

In this study, robust control methods are employed to control the permanent magnet synchronous motor. Features such as good performance despite the vehicle's load torque disturbance, measurement noise, system parameter changes and high-frequency uncertainties of structured and unstructured types make this approach more effective. The control objective is controlling and maintaining the vehicle speed and motor torque in driver's desired references. In this study, a μ controller and a reduced order μ controller are designed for the first time due to simplicity and easy implementation of the optimal controller. Simulation studies are carried out in this study to evaluate the control performance of the designed control systems. Comparison studies show that the proposed controllers have several advantages compared to the proportional–integral–derivative controller including reference speed and torque tracking, mean square error, disturbance rejection and noise attenuation.

Inspec keywords: torque control; control system synthesis; robust control; machine control; angular velocity control; electric vehicles; permanent magnet motors; synchronous motors; three-term control; uncertain systems

Other keywords: structured types; measurement noise; reduced order μ controller; high-frequency uncertainties; load torque disturbance; vehicle speed; motor torque; system parameter changes; control objective; robust control methods; unstructured types; electric vehicles; permanent magnet synchronous motor; control performance; designed control systems; H∞ controller

Subjects: Velocity, acceleration and rotation control; Mechanical variables control; Stability in control theory; Control system analysis and synthesis methods; Synchronous machines; Control of electric power systems; Transportation system control; Transportation

References

    1. 1)
      • 24. Yongsoon, P., Seung-Ki, S.: ‘Sensorless control method for PMSM based on frequency-adaptive disturbance observer’, IEEE J. Emerging Sel. Topics Power Electron., 2014, 2, pp. 143151.
    2. 2)
      • 17. Hamida, M., Leon, J.D., Glumineau, A., et al: ‘An adaptive interconnected observer for sensorless control of PM synchronous motors with online parameter identification’, IEEE Trans. Ind. Electron., 2013, 60, pp. 739748.
    3. 3)
      • 15. Sant, A.V., Rajagopal, K.R.: ‘PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions’, IEEE Trans. Magn., 2009, 45, pp. 46724675.
    4. 4)
      • 16. Narendra, K.S., Annaswamy, A.: ‘Stable adaptive systems1989.
    5. 5)
      • 7. Liu, P., Liu, H.: ‘Permanent magnet synchronous motor drive system for electric vehicles using bidirectional Z-source inverter’, IET Electr. Syst. Transp., 2012, 2, pp. 178185.
    6. 6)
      • 25. Krause, P.C., Wasynczuk, O., Sudhoff, S.D.: ‘Analysis of electrical machinery and drive systems’ (John Wiley Press, Hoboken, NJ, USA, 2008).
    7. 7)
      • 11. Kung, Y., Thanh, N.P., Wang, M.: ‘Design and simulation of a sensorless PMSM drive with microprocessor-based PI controller and dedicated hardware EKF estimator’, J. Appl. Math. Model., 2015, 39, pp. 786789.
    8. 8)
      • 8. Zhang, G., Wang, G., Xu, D., et al: ‘Adaline-netwok-based PLL for position sensorless Interior permanent magnet synchronous motor drives’, IEEE Trans. Power Electron., 2016, 31, (2), pp. 14501460.
    9. 9)
      • 9. Pellegrino, G., Vagati, A., Guglielmi, P., et al: ‘Performance comparison between surface mounted and interior PM motor drives for electric vehicle application’, IEEE Trans. Ind. Electron., 2012, 59, pp. 803811.
    10. 10)
      • 12. Choi, H.H., Yun, H.M., Kim, Y.: ‘Implementation of evolutionary fuzzy PID speed controller for PM synchronous motor’, IEEE Trans. Ind. Inf., 2015, 11, pp. 540547.
    11. 11)
      • 14. Jung, J., Kim, T., Choi, H.: ‘Speed control of a permanent magnet synchronous motor with a torque observe: a fuzzy approach’, IET Control Theory Appl., 2010, 4, pp. 29712981.
    12. 12)
      • 34. Salehi, M., Afzalian, A.: ‘Robust H control design for a boiler-turbine unit’. Int. Conf. on Smart Manufacturing Application, Gyeonggi-do, 2008.
    13. 13)
      • 20. Ortega, C., Aria, A., Caruana, C., et al: ‘Improved waveform quality in the direct torque control of matrix-converter-fed PMSM drives’, IEEE Trans. Ind. Electron., 2010, 57, pp. 21012110.
    14. 14)
      • 18. Jung, J.W., Leu, V.Q., Do, T.D., et al: ‘Adaptive PID speed control design for permanent magnet synchronous motor drives’, IEEE Trans. Power Electron., 2015, 30, pp. 900908.
    15. 15)
      • 1. Pistoia, G.: ‘Electric and hybrid vehicles: power sources, models, sustainability, infrastructure and the market’ (Elsevier, Oxford, UK, 2010).
    16. 16)
      • 22. Zhang, X., Sun, L., Zhao, K., et al: ‘Nonlinear speed control for PMSM system using sliding mode control and disturbance compensation techniques’, IEEE Trans. Power Electron., 2013, 28, pp. 13581365.
    17. 17)
      • 2. Chan, C.C.: ‘The state of the art of electric, hybrid, and fuel cell vehicles’, Proc. IEEE, 2007, 95, pp. 704718.
    18. 18)
      • 35. Safikhani, H., Tabatabaei, M.: ‘Transient response control of first order plants based on PID controller’, Majlesi J. Mechatronic Syst., 2015, 4, pp. 1720.
    19. 19)
      • 32. Skogestad, S., Postlethwaite, I.: ‘Multivariable feedback control analysis and design’ (John Wiley, Hoboken, NJ, USA, 2013).
    20. 20)
      • 4. Errouissi, R., Ouhrouche, M., Chen, W., et al: ‘Robust cascaded nonlinear predictive control of a permanent magnet synchronous motor with anti-windup compensator’, IEEE Trans. Ind. Electron., 2012, 59, pp. 30783088.
    21. 21)
      • 3. Ehsani, M., Gao, Y., Gay, S.E., et al: ‘Modern electric, hybrid electric and fuel cell vehicles’ (CRC Press LLC, Boca Raton, FL, USA, 2005).
    22. 22)
      • 31. Salehi, M., Afzalian, A.: ‘Robust µ-synthesis and H-loop shaping controllers for a boiler-turbine unit’. IEEE Region 5 Conf., Kansas City, 2008.
    23. 23)
      • 19. Song, X., Fang, J., Han, B., et al: ‘Adaptive compensation method for high-speed surface PMSM sensorless drive of EMF-based position estimation error’, IEEE Trans. Power Electron., 2016, 31, pp. 14381449.
    24. 24)
      • 6. Deng, Z., Nian, X.: ‘Robust control of permanent magnet synchronous motors’. IEEE/CAA J. Autom. Sin., 2015, 2, (2), pp. 143150.
    25. 25)
      • 27. Colton, S.W.: ‘A modified synchronous current regulator for field-oriented control of permanent magnet synchronous motors’. IEEE Vehicle Power and Propulsion Conf., Seoul, Korea, 2012.
    26. 26)
      • 28. Pourseif, T., Afzalian, A.: ‘Pitch angle control of wind turbine systems in cold weather conditions using μ robust controller’, Int. J. Energy Environ. Eng., 2017, 8, (3), pp. 197207.
    27. 27)
      • 30. Poursief, T, Taheri Andani, M, Pourgharibshahi, H, et al: ‘Design of H- infinity controller for wind turbine in the cold weather conditions’. IEEE in Celemson Power System Conferenc, USA, South Carolina, 2018.
    28. 28)
      • 33. Gu, D., Petkov, P., Konstantinov, M.: ‘Robust control design with MATLAB’, 2013.
    29. 29)
      • 26. Acarnley, P.P., Watson, J.F.: ‘Review of position sensorless operation of brushless permanent magnet machines’, IEEE Trans. Ind. Electron., 2006, 23, 2, pp. 352362.
    30. 30)
      • 10. Saleh, A., Al-Mashakbeh, O.: ‘Proportional integral and derivative control of brushless DC motor’, European J. Sci. Res., 2009, 35, pp. 198203.
    31. 31)
      • 5. Krishnan, R.: ‘Permanent magnet synchronous and brushless DC motor drives’, 2010.
    32. 32)
      • 29. Pourseif, T., Taheri Andani, M., Pourgharibshahi, H., et al: ‘Designing Mu robust controller in wind turbine in cold weather conditions’, Stability Control and Reliable Performance of Wind Turbines, 2018.
    33. 33)
      • 13. Jung, J.W., Choi, Y.S., Leu, V.Q., et al: ‘Fuzzy PI-type current controllers for permanent magnet synchronous motors’, IET Electr. Power Appl., 2011, 5, pp. 143152.
    34. 34)
      • 23. Cao, J.B., Cao, B.G.: ‘Fuzzy-logic-based sliding mode controller design for position sensorless electric vehicle’, IEEE Trans. Power Electron., 2014, 24, pp. 23682378.
    35. 35)
      • 21. Hosseyni, A., Trablesi, R., Mimouni, M.F., et al: ‘Sensorless sliding mode obersver for a five-phase permanent magnet synchronous motor drive’, ISA Trans., 2015, 58, pp. 462473.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2018.5084
Loading

Related content

content/journals/10.1049/iet-est.2018.5084
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading