Distance-oriented hierarchical control and ecological driving strategy for HEVs

Distance-oriented hierarchical control and ecological driving strategy for HEVs

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Electrical Systems in Transportation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Hybrid electric vehicles (HEVs) provide a promising alternative to conventional engine-powered vehicles, with less emission and better fuel economy. This study proposes a hierarchical control for a power-split HEV over a driving cycle, featuring pre-trip optimisation and en-route speed adaption. Constraints including vehicle powertrain boundaries, road gradients, and speed limits, are taken into consideration. In the first stage, the HEV operating conditions, including the optimal vehicle SOC, speed profiles, and total driving time, are generated for the entire trip before departure. Based on the pre-trip results, the second stage adapts the vehicle speed for a short horizon when driving, while taking the safety spacing to the preceding vehicle into consideration, which acts as an indicator of actual traffic conditions and guarantees safe driving. Both optimisations are conducted under the distance domain for realising localisation in the optimal speed profile due to frequent changes in traffic conditions. An estimation of distribution algorithm is used to run the simulation so that the feasibility, robustness, and effectiveness of the proposed hierarchical control can be demonstrated.


    1. 1)
      • 1. Murphey, Y.L., Park, J., Chen, Z., et al: ‘Intelligent hybrid vehicle power control – Part I: machine learning of optimal vehicle power’, IEEE Trans. Veh. Technol., 2012, 61, (8), pp. 35193530.
    2. 2)
      • 2. Malikopoulos, A.A.: ‘Supervisory power management control algorithms for hybrid electric vehicles: a survey’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (5), pp. 18691885.
    3. 3)
      • 3. Denis, N., Dubois, M.R., Trovão, J.P.F., et al: ‘Power split strategy optimization of a plug-in parallel hybrid electric vehicle’, IEEE Trans. Veh. Technol., 2018, 67, (1), pp. 315326.
    4. 4)
      • 4. Ramadan, H.S., Becherif, M., Claude, F.: ‘Energy management improvement of hybrid electric vehicles via combined GPS/rule-based methodology’, IEEE Trans. Autom. Sci. Eng., 2017, 14, (2), pp. 586597.
    5. 5)
      • 5. Li, Y., Chen, B.: ‘Development of integrated rule-based control and equivalent consumption minimization strategy for HEV energy management’. 2016 12th IEEE/ASME Int. Conf. Mechatronic and Embedded Systems and Applications (MESA), Auckland, New Zealand, August 2016, pp. 16.
    6. 6)
      • 6. Li, S.G., Sharkh, S.M., Walsh, F.C., et al: ‘Energy and battery management of a plug-in series hybrid electric vehicle using fuzzy logic’, IEEE Trans. Veh. Technol., 2011, 60, (8), pp. 35713585.
    7. 7)
      • 7. Padmarajan, B.V., McGordon, A., Jennings, P.A.: ‘Blended rule-based energy management for PHEV: system structure and strategy’, IEEE Trans. Veh. Technol., 2016, 65, (10), pp. 87578762.
    8. 8)
      • 8. Hui, X., Ding, Y.: ‘The study of plug-In hybrid electric vehicle power management strategy simulation’. IEEE 2008 Vehicle Power and Propulsion Conf.. VPPC'08, Harbin, China, 2008, pp. 13.
    9. 9)
      • 9. Prokhorov, D.V.: ‘Toyota Prius HEV neurocontrol and diagnostics’, Neural Netw., 2008, 21, (2–3), pp. 458465.
    10. 10)
      • 10. Jiang, Q., Ossart, F., Marchand, C.: ‘Comparative study of real-time HEV energy management strategies’, IEEE Trans. Veh. Technol., 2017, 66, (12), pp. 1087510888.
    11. 11)
      • 11. Rezaei, A., Burl, J.B., Zhou, B.: ‘Estimation of the ECMS equivalent factor bounds for hybrid electric vehicles’, IEEE Trans. Control Syst. Technol., 2017, 26, pp. 21982205.
    12. 12)
      • 12. Sun, C., Sun, F., He, H.: ‘Investigating adaptive-ECMS with velocity forecast ability for hybrid electric vehicles’, Appl. Energy, 2017, 185, pp. 16441653.
    13. 13)
      • 13. Zhao, D., Stobart, R., Dong, G., et al: ‘Real-time energy management for diesel heavy duty hybrid electric vehicles’, IEEE Trans. Control Syst. Technol., 2015, 23, (3), pp. 829841.
    14. 14)
      • 14. Guo, L., Gao, B., Gao, Y., et al: ‘Optimal energy management for HEVs in Eco-driving applications using bi-level MPC’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (8), pp. 21532162.
    15. 15)
      • 15. Zhang, J., Shen, T.: ‘Real-time fuel economy optimization with nonlinear MPC for PHEVs’, IEEE Trans. Control. Syst. Technol., 2016, 24, (6), pp. 21672175.
    16. 16)
      • 16. Liu, B., Li, L., Wang, X., et al: ‘Hybrid electric vehicle downshifting strategy based on stochastic dynamic programming during regenerative braking process’, IEEE Trans. Veh. Technol., 2018, 67, pp. 47164727.
    17. 17)
      • 17. Xu, F., Jing, Y., Jiao, X.: ‘A modified energy management strategy based on SDP policy iteration for commuter hybrid electric vehicles’. 2016 35th Chinese Control Conf. (CCC), Chengdu, China, July 2016, pp. 25372541.
    18. 18)
      • 18. Zhang, C., Vahid, A.: ‘Real-time optimal control of plug-in hybrid vehicles with trip preview’. American Control Conf. (ACC), Baltimore, MD, USA, June 2010, pp. 69176922.
    19. 19)
      • 19. Zhao, J., Wang, J.: ‘Integrated model predictive control of hybrid electric vehicles coupled with after treatment systems’, IEEE Trans. Veh. Technol., 2016, 65, (3), pp. 11991211.
    20. 20)
      • 20. Sun, C., Moura, S.J., Hu, X., et al: ‘Dynamic traffic feedback data enabled energy management in plug-in hybrid electric vehicles’, IEEE Trans. Control Syst. Technol., 2015, 23, (3), pp. 10751086.
    21. 21)
      • 21. Enang, W., Bannister, C.: ‘Modelling and control of hybrid electric vehicles (a comprehensive review)’, Renew. Sust. Energy Rev., 2017, 74, pp. 12101239.
    22. 22)
      • 22. HomChaudhuri, B., Lin, R., Pisu, P.: ‘Hierarchical control strategies for energy management of connected hybrid electric vehicles in urban roads’, Transp. Res. C, Emerg. Technol., 2016, 62, pp. 7086.
    23. 23)
      • 23. Huang, M.: ‘Optimal multilevel hierarchical control strategy for parallel hybrid electric vehicle’. IEEE Vehicle Power and Propulsion Conf., 2006. VPPC'06, Windsor, UK, September 2006, pp. 14.
    24. 24)
      • 24. Wang, X., Li, L., Yang, C.: ‘Hierarchical control of dry clutch for engine-start process in a parallel hybrid electric vehicle’, IEEE Trans. Transp. Electrification, 2016, 2, (2), pp. 231243.
    25. 25)
      • 25. Mensing, F., Bideaux, E., Trigui, R., et al: ‘Trajectory optimization for eco-driving taking into account traffic constraints’, Transp. Res. D, Transp. Environ., 2013, 18, pp. 5561.
    26. 26)
      • 26. Cheng, Q., Nouveliere, L., Orfila, O.: ‘A new eco-driving assistance system for a light vehicle: energy management and speed optimization’. 2013 IEEE Intelligent Vehicles Symp. (IV), Gold Coast, Australia, June 2013, pp. 14341439.
    27. 27)
      • 27. Malikopoulos, A.A.: ‘A multiobjective optimization framework for online stochastic optimal control in hybrid electric vehicles’, IEEE Trans. Control Syst. Technol., 2016, 24, (2), pp. 440450.
    28. 28)
      • 28. Montazeri-Gh, M., Mahmoodi-k, M.: ‘Development a new power management strategy for power split hybrid electric vehicles’, Transp. Res. D, Transp. Environ., 2015, 37, pp. 7996.
    29. 29)
      • 29. Duoba, M., Lohse-Busch, H., Carlson, R., et al: ‘Analysis of power-split HEV control strategies using data from several vehicles(No. 2007-01-0291). SAE Technical Paper, 2007.
    30. 30)
      • 30. Argonne National Laboratory, AUTONOMIE, Available at
    31. 31)
      • 31. Kim, N., Rousseau, A., Rask, E.: ‘Autonomie model validation with test data for 2010 Toyota Prius’. in Proc. SAE, Detroit, MI, USA, 2012, pp. 114.
    32. 32)
      • 32. Kim, N., Duoba, M., Kim, N., et al: ‘Validating Volt PHEV model with dynamometer test data using autonomie’, SAE Int. J. Passenger Cars-Mech. Syst., 2013, 6, (2013-01-1458), pp. 985992.
    33. 33)
      • 33. Yanli, L., Dai Sheng, C.Z.: ‘Estimation of state of charge of lithium-ion battery based on finite difference extended Kalman filter’, Trans. China Electrotech. Soc., 2014, 29, (1), pp. 221228.
    34. 34)
      • 34. Sepasi, S., Ghorbani, R., Liaw, B.Y.: ‘SOC estimation for aged lithium-ion batteries using model adaptive extended Kalman filter’. 2013 IEEE Transportation Electrification Conf. Expo (ITEC), Detroit, MI, USA, June 2013, pp. 16.
    35. 35)
      • 35. Cuma, M.U., Koroglu, T.: ‘A comprehensive review on estimation strategies used in hybrid and battery electric vehicles’, Renew. Sust. Energy Rev., 2015, 42, pp. 517531.
    36. 36)
      • 36. Sun, Y., Ma, Z., Tang, G., et al: ‘Estimation method of state-of-charge for lithium-ion battery used in hybrid electric vehicles based on variable structure extended kalman filter’, Chin. J. Mech. Eng., 2016, 29, (4), pp. 717726.
    37. 37)
      • 37. Chun, C.Y., Seo, G.S., Cho, B.H., et al: ‘A fast state-of-charge estimation algorithm for LiFePO 4 batteries utilizing extended Kalman filter’. 2013 IEEE ECCE Asia Downunder (ECCE Asia), Melbourne, VIC, Australia, June 2013, pp. 912916.
    38. 38)
      • 38. Baba, A., Adachi, S.: ‘SOC estimation of HEV/EV battery using series Kalman filter’, Electr. Eng. Jpn., 2014, 187, (2), pp. 5362.
    39. 39)
      • 39. Chien, C., Lai, M., Mayr, R.: ‘Vehicle following controller design for autonomous intelligent vehicles’. InConf. Intelligent Robots in Factory, Field, Space, and Service, Houston, TX, USA, March 1994, p. 1203.
    40. 40)
      • 40. Chien, C.C., Zhang, Y., Cheng, C.Y.: ‘Autonomous intelligent cruise control using both front and back information for tight vehicle following maneuvers’. Proc. 1995 American Control Conf., Seattle, WA, USA, 1995, vol. 5, pp. 30913095.
    41. 41)
      • 41. Yang, P., Tang, K., Lu, X.: ‘Improving estimation of distribution algorithm on multimodal problems by detecting promising areas’, IEEE Trans. Cybernetics, 2015, 45, (8), pp. 14381449.
    42. 42)
      • 42. Qi, X., Wu, G., Boriboonsomsin, K., et al: ‘Development and evaluation of an evolutionary algorithm-based online energy management system for plug-in hybrid electric vehicles’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (8), pp. 21812191.
    43. 43)
      • 43. Su, W., Chow, M.Y.: ‘Performance evaluation of an EDA-based large-scale plug-in hybrid electric vehicle charging algorithm’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 308315.

Related content

This is a required field
Please enter a valid email address