http://iet.metastore.ingenta.com
1887

Power quality improvement in smart grids using electric vehicles: a review

Power quality improvement in smart grids using electric vehicles: a review

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electrical Systems in Transportation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The global warming problem together with the environmental issues has already pushed the governments to replace the conventional fossil-fuel vehicles with electric vehicles (EVs) having less emission. This replacement has led to adding a huge number of EVs with the capability of connecting to the grid. It is noted that the presence of such vehicles may introduce several challenges to the electrical grid due to their grid-to-vehicle and vehicle-to-grid capabilities. In between, the power quality issues would be the main items in electrical grids highly impacted by such vehicles. Thus, this study is devoted to investigating and reviewing the challenges brought to the electrical networks by EVs. In this regard, the current and future conditions of EVs along with the recent research works made into the issue of EVs have been discussed in this study. Accordingly, the problems due to the connection of EVs to the electrical grid have been discussed, and some solutions have been proposed to deal with these challenges.

References

    1. 1)
      • 1. Energy independence and security act of 2007.
    2. 2)
      • 2. Aghaei, J., Nezhad, A.E., Rabiee, A., et al: ‘Contribution of plug-in hybrid electric vehicles in power system uncertainty management’, Renew. Sustain. Energy Rev., 2016, 59, pp. 450458.
    3. 3)
      • 3. Tan, K.M., Ramachandaramurthy, V.K., Yong, J.Y.: ‘Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques’, Renew. Sustain. Energy Rev., 2016, 53, pp. 720732.
    4. 4)
      • 4. Martinenas, S., Knezović, K., Marinelli, M.: ‘Management of power quality issues in low voltage networks using electric vehicles: experimental validation’, IEEE Trans. Power Deliv., 2017, 32, pp. 971979.
    5. 5)
      • 5. Chattopadhyay, S., Mitra, M., Sengupta, S.: ‘Electric power quality’, in Chattopadhyay, S., Mitra, M., Sengupta, S. (Eds.): ‘Electric power quality’ (Springer Netherlands, Dordrecht, 2011), pp. 512.
    6. 6)
      • 6. Kappagantu, R., Daniel, S.A., Yadav, A.: ‘Power quality analysis of smart grid pilot project, Puducherry’, Procedia Technol., 2015, 21, pp. 560568.
    7. 7)
      • 7. Moses, P.S., Deilami, S., Masoum, A.S., et al: ‘Power quality of smart grids with plug-in electric vehicles considering battery charging profile’. 2010 IEEE PES Innovative Smart Grid Technologies Conf. Europe (ISGT Europe), Gothenberg, Sweden, 2010, pp. 17.
    8. 8)
      • 8. Niitsoo, J., Taklaja, P., Palu, I., et al: ‘Power quality issues concerning photovoltaic generation and electrical vehicle loads in distribution grids’, Smart Grid Renew. Energy, 2015, 6, p. 164.
    9. 9)
      • 9. Gandoman, F.H., Ahmadi, A., Sharaf, A.M., et al: ‘Review of FACTS technologies and applications for power quality in smart grids with renewable energy systems’, Renew. Sustain. Energy Rev., 2018, 82, pp. 502514.
    10. 10)
      • 10. Anjana, K.R., Shaji, R.S.: ‘A review on the features and technologies for energy efficiency of smart grid’, Int. J. Energy Res., 2018, 42, (3), pp. 936952.
    11. 11)
      • 11. Monteiro, V., Carmo, J.P., Pinto, J.G., et al: ‘A flexible infrastructure for dynamic power control of electric vehicle battery chargers’, IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 45354547.
    12. 12)
      • 12. El-hawary, M.E.: ‘The smart grid – state-of-the-art and future trends’, Electr. Power Compon. Syst., 2014, 42, (3–4), pp. 239250.
    13. 13)
      • 13. Gray, M.K., Morsi, W.G.: ‘Power quality assessment in distribution systems embedded with plug-in hybrid and battery electric vehicles’, IEEE Trans. Power Syst., 2015, 30, (2), pp. 663671.
    14. 14)
      • 14. Jiang, C., Torquato, R., Salles, D., et al: ‘Method to assess the power-quality impact of plug-in electric vehicles’, IEEE Trans. Power Deliv., 2014, 29, (2), pp. 958965.
    15. 15)
      • 15. Farhadi, M., Mohammed, O.: ‘Energy storage technologies for high-power applications’, IEEE Trans. Ind. Appl., 2016, 52, (3), pp. 19531961.
    16. 16)
      • 16. Sbordone, D., Bertini, I., Di Pietra, B., et al: ‘EV fast charging stations and energy storage technologies: a real implementation in the smart micro grid paradigm’, Electr. Power Syst. Res., 2015, 120, pp. 96108.
    17. 17)
      • 17. Rangaraju, S., De Vroey, L., Messagie, M., et al: ‘Impacts of electricity mix, charging profile, and driving behavior on the emissions performance of battery electric vehicles: a Belgian case study’, Appl. Energy, 2015, 148, pp. 496505.
    18. 18)
      • 18. Yang, Z., Li, K., Foley, A.: ‘Computational scheduling methods for integrating plug-in electric vehicles with power systems: a review’, Renew. Sustain. Energy Rev., 2015, 51, pp. 396416.
    19. 19)
      • 19. Weckx, S., Driesen, J.: ‘Load balancing with EV chargers and PV inverters in unbalanced distribution grids’, IEEE Trans. Sustain. Energy, 2015, 6, (2), pp. 635643.
    20. 20)
      • 20. Tan, J., Wang, L.: ‘Integration of plug-in hybrid electric vehicles into residential distribution grid based on two-layer intelligent optimization’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 17741784.
    21. 21)
      • 21. Pinto, J.G., Monteiro, V., Gonçalves, H., et al: ‘Onboard reconfigurable battery charger for electric vehicles with traction-to-auxiliary mode’, IEEE Trans. Veh. Technol., 2014, 63, (3), pp. 11041116.
    22. 22)
      • 22. Benyahia, N., Denoun, H., Badji, A., et al: ‘MPPT controller for an interleaved boost dc–dc converter used in fuel cell electric vehicles’, Int. J. Hydrog. Energy, 2014, 39, (27), pp. 1519615205.
    23. 23)
      • 23. Mozafar, M.R., Moradi, M.H., Amini, M.H.: ‘A simultaneous approach for optimal allocation of renewable energy sources and electric vehicle charging stations in smart grids based on improved GA-PSO algorithm’, Sustain. Cities Soc., 2017, 32, pp. 627637.
    24. 24)
      • 24. Wang, T., O'Neill, D., Kamath, H.: ‘Dynamic control and optimization of distributed energy resources in a microgrid’, IEEE Trans. Smart Grid, 2015, 6, (6), pp. 28842894.
    25. 25)
      • 25. Hajforoosh, S., Masoum, M.A.S., Islam, S.M.: ‘Real-time charging coordination of plug-in electric vehicles based on hybrid fuzzy discrete particle swarm optimization’, Electr. Power Syst. Res., 2015, 128, pp. 1929.
    26. 26)
      • 26. Javadi, A., Al-Haddad, K.: ‘A single-phase active device for power quality improvement of electrified transportation’, IEEE Trans. Ind. Electron., 2015, 62, (5), pp. 30333041.
    27. 27)
      • 27. Mocci, S., Natale, N., Pilo, F., et al: ‘Demand side integration in LV smart grids with multi-agent control system’, Electr. Power Syst. Res., 2015, 125, pp. 2333.
    28. 28)
      • 28. Esmaili, M., Rajabi, M.: ‘Optimal charging of plug-in electric vehicles observing power grid constraints’, IET Gener. Transm. Distrib., 2014, 8, (4), pp. 583590.
    29. 29)
      • 29. Moradi, M.H., Abedini, M., Tousi, S.M.R., et al: ‘Optimal siting and sizing of renewable energy sources and charging stations simultaneously based on differential evolution algorithm’, Int. J. Electr. Power Energy Syst., 2015, 73, pp. 10151024.
    30. 30)
      • 30. Soares, J., Fotouhi Ghazvini, M.A., Vale, Z., et al: ‘A multi-objective model for the day-ahead energy resource scheduling of a smart grid with high penetration of sensitive loads’, Appl. Energy, 2016, 162, pp. 10741088.
    31. 31)
      • 31. Lucas, A., Bonavitacola, F., Kotsakis, E., et al: ‘Grid harmonic impact of multiple electric vehicle fast charging’, Electr. Power Syst. Res., 2015, 127, pp. 1321.
    32. 32)
      • 32. 1159–1995 IS. IEEE Recommended Practice for monitoring electric power quality. IEEE Proceedings, 1995.
    33. 33)
      • 33. Sankaran, C.: ‘Power quality’ (CRC Press, Electric Power Engineering Series, New York, NY, USA, 2001).
    34. 34)
      • 34. Rönnberg, S., Bollen, M.: ‘Power quality issues in the electric power system of the future’, Electr. J., 2016, 29, pp. 4961.
    35. 35)
      • 35. Bollen, M.: ‘Understanding power quality problems – voltage sag and interruptions’, 2000.
    36. 36)
      • 36. Lopes, J.A.P., Soares, F.J., Almeida, P.M.R.: ‘Integration of electric vehicles in the electric power system’, Proc. IEEE, 2011, 99, pp. 168183.
    37. 37)
      • 37. Kempton, W., Letendre, S.E.: ‘Electric vehicles as a new power source for electric utilities’, Transp. Res. D, Transp. Environ., 1997, 2, pp. 157175.
    38. 38)
      • 38. Chan, C.C.: ‘The state of the art of electric, hybrid, and fuel cell vehicles’, Proc. IEEE, 2007, 95, pp. 704718.
    39. 39)
      • 39. Plötz, P., Gnann, T., Wietschel, M.: ‘Modelling market diffusion of electric vehicles with real world driving data – part I: model structure and validation’, Ecol. Econ., 2014, 107, pp. 411421.
    40. 40)
      • 40. Kempton, W., Tomić, J.: ‘Vehicle-to-grid power fundamentals: calculating capacity and net revenue’, J. Power Sources, 2005, 144, pp. 268279.
    41. 41)
      • 41. Available at https://www.mapsofworld.com/headlinesworld/miscellaneous/countries-largest-electric-car-stocks/.
    42. 42)
      • 42. Wang, H., Song, Q., Zhang, L., et al: ‘Load characteristics of electric vehicles in charging and discharging states and impacts on distribution systems’. Int. Conf. on Sustainable Power Generation and Supply (SUPERGEN 2012), Hangzhou, China, 2012, pp. 17.
    43. 43)
      • 43. Li, H.L., Bai, X.M., Tan, W.: ‘Impacts of plug-in hybrid electric vehicles charging on distribution grid and smart charging’. 2012 IEEE Int. Conf. on Power System Technology (POWERCON), Auckland, New Zealand, 2012, pp. 15.
    44. 44)
      • 44. Rautiainen, A., Mutanen, A., Repo, S., et al: ‘Case studies on impacts of plug-in vehicle charging load on the planning of urban electricity distribution networks’. 2013 8th Int. Conf. and Exhibition on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 2013.
    45. 45)
      • 45. Yong, J.Y., Ramachandaramurthy, V.K., Tan, K.M., et al: ‘Bi-directional electric vehicle fast charging station with novel reactive power compensation for voltage regulation’, Int. J. Electr. Power Energy Syst., 2015, 64, pp. 300310.
    46. 46)
      • 46. Siti, M.W., Nicolae, D.V., Jimoh, A.A., et al: ‘Reconfiguration and load balancing in the LV and MV distribution networks for optimal performance’, IEEE Trans. Power Deliv., 2007, 22, pp. 25342540.
    47. 47)
      • 47. Devi, S., Geethanjali, M.: ‘Optimal location and sizing determination of distributed generation and DSTATCOM using particle swarm optimization algorithm’, Int. J. Electr. Power, 2014, 62, pp. 562570.
    48. 48)
      • 48. Masoum, A.S., Deilami, S., Moses, P.S., et al: ‘Smart load management of plug-in electric vehicles in distribution and residential networks with charging stations for peak shaving and loss minimisation considering voltage regulation’, IET Gener. Transm. Distrib., 2011, 5, pp. 877888.
    49. 49)
      • 49. Yong, J.Y., Fazeli, S.M., Ramachandaramurthy, V.K., et al: ‘Design and development of a three-phase off-board electric vehicle charger prototype for power grid voltage regulation’, Energy, 2017, 133, pp. 128141.
    50. 50)
      • 50. Marra, F., Yang, Y.G., Fawzy, Y.T., et al: ‘Improvement of local voltage in feeders with photovoltaic using electric vehicles’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 35153516, Art. no. 6490073 (in English).
    51. 51)
      • 51. Alam, M.J.E., Muttaqi, K.M., Sutanto, D.: ‘Effective utilization of available PEV battery capacity for mitigation of solar PV impact and grid support with integrated V2G functionality’, IEEE Trans. Smart Grid, 2016, 7, (3), pp. 15621571, Art. no. 7307203 (in English).
    52. 52)
      • 52. Akhtar, Z., Chaudhuri, B., Hui, S.Y.R.: ‘Smart loads for voltage control in distribution networks’, IEEE Trans. Smart Grid, 2017, 8, (2), pp. 937946(in English).
    53. 53)
      • 53. García-Triviño, P., Torreglosa, J.P., Fernández-Ramírez, L.M., et al: ‘Control and operation of power sources in a medium-voltage direct-current microgrid for an electric vehicle fast charging station with a photovoltaic and a battery energy storage system’, Energy, 2016, 115, pp. 3848(in English).
    54. 54)
      • 54. Torreglosa, J.P., García-Triviño, P., Fernández-Ramirez, L.M., et al: ‘Decentralized energy management strategy based on predictive controllers for a medium voltage direct current photovoltaic electric vehicle charging station’, Energy Convers. Manage., 2016, 108, pp. 113(in English).
    55. 55)
      • 55. Bayat, M., Sheshyekani, K., Rezazadeh, A.: ‘A unified framework for participation of responsive end-user devices in voltage and frequency control of the smart grid’, IEEE Trans. Power Syst., 2014, 30, pp. 13691379.
    56. 56)
      • 56. Rana, R., Singh, M., Mishra, S.: ‘Design of modified droop controller for frequency support in microgrid using fleet of electric vehicles’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 36273636(in English).
    57. 57)
      • 57. Falahi, M., Chou, H.M., Ehsani, M., et al: ‘Potential power quality benefits of electric vehicles’, IEEE Trans. Sustain. Energy, 2013, 4, (4), pp. 10161023, Art. no. 6541983 (in English).
    58. 58)
      • 58. Foster, J.M., Trevino, G., Kuss, M., et al: ‘Plug-in electric vehicle and voltage support for distributed solar: theory and application’, IEEE Syst. J., 2013, 7, (4), pp. 881888, Art. no. 6387256 (in English).
    59. 59)
      • 59. Shahnia, F., Ghosh, A., Ledwich, G., et al: ‘Predicting voltage unbalance impacts of plug-in electric vehicles penetration in residential low-voltage distribution networks’, Electr. Power Comp. Syst., 2013, 41, pp. 15941616.
    60. 60)
      • 60. Gray, M.K., Morsi, W.G.: ‘Economic assessment of phase reconfiguration to mitigate the unbalance due to plug-in electric vehicles charging’, Electr. Power Syst. Res., 2016, 140, pp. 329336.
    61. 61)
      • 61. Farahani, H.F.: ‘Improving voltage unbalance of low-voltage distribution networks using plug-in electric vehicles’, J. Clean Prod., 2017, 148, pp. 336346.
    62. 62)
      • 62. Zhou, N.C., Wang, J.J., Wang, Q.G., et al: ‘Measurement-based harmonic modeling of an electric vehicle charging station using a three-phase uncontrolled rectifier’, IEEE Trans. Smart Grid, 2015, 6, pp. 13321340.
    63. 63)
      • 63. Kim, K., Song, C.S., Byeon, G., et al: ‘Power demand and total harmonic distortion analysis for an EV charging station concept utilizing a battery energy storage system’, J. Electr. Eng. Technol., 2013, 8, pp. 12341242.
    64. 64)
      • 64. Debbou, M., Colet, F.: ‘Interleaved DC/DC charger for wireless power transfer’. 2017 IEEE Int. Conf. on Industrial Technology (ICIT), Toronto, ON, Canada, 2017, pp. 15551560.
    65. 65)
      • 65. Deilami, S., Masoum, A.S., Moses, P.S., et al: ‘Voltage profile and THD distortion of residential network with high penetration of plug-in electrical vehicles’.
    66. 66)
      • 66. Wang, Q., Zhou, N., Wang, J., et al: ‘Harmonic amplification investigation and calculation of electric vehicle charging stations using three-phase uncontrolled rectification chargers’, Electr. Power Syst. Res., 2015, 123, pp. 174184.
    67. 67)
      • 67. Roh, Y.S., Moon, Y.J., Gong, J.C., et al: ‘Active power factor correction (PFC) circuit with resistor-free zero-current detection’, IEEE Trans. Power Electron., 2011, 26, pp. 630637.
    68. 68)
      • 68. Huang, S., Pillai, J.R., Liserre, M., et al: ‘Improving photovoltaic and electric vehicle penetration in distribution grids with smart transformer’. 2013 4th IEEE/PES Innovative Smart Grid Technologies Europe, ISGT Europe 2013, Lyngby, 2013.
    69. 69)
      • 69. Farahani, H.F., Rabiee, A., Khalili, M.: ‘Plug-in electric vehicles as a harmonic compensator into microgrids’, J. Clean Prod., 2017, 159, pp. 388396.
    70. 70)
      • 70. Misra, R., Paudyal, S.: ‘Analysis and reduction of total harmonic distortions in distribution system with electric vehicles and wind generators’. IEEE Power Energy Society General Meeting, Denver, CO, USA, 2015.
    71. 71)
      • 71. Dharmakeerthi, C.H., Mithulananthan, N., Saha, T.K.: ‘Overview of the impacts of plug-in electric vehicles on the power grid’. 2011 IEEE PES Innovative Smart Grid Technologies, Perth, WA, Australia, 2011, pp. 18.
    72. 72)
      • 72. Pillai, J.R., Bak-Jensen, B.: ‘Impacts of electric vehicle loads on power distribution systems’. 2010 IEEE Vehicle Power and Propulsion Conf., Lille, France, 2010, pp. 16.
    73. 73)
      • 73. Fernandez, L.P., Roman, T.G.S., Cossent, R., et al: ‘Assessment of the impact of plug-in electric vehicles on distribution networks’, IEEE Trans. Power Syst., 2011, 26, pp. 206213.
    74. 74)
      • 74. Masoum, M.A.S., Moses, P.S., Smedley, K.M.: ‘Distribution transformer losses and performance in smart grids with residential plug-In electric vehicles’. ISGT 2011, Anaheim, CA, USA, 2011, pp. 17.
    75. 75)
      • 75. Khatiri-Doost, S., Amirahmadi, M.: ‘Peak shaving and power losses minimization by coordination of plug-in electric vehicles charging and discharging in smart grids’. 2017 IEEE Int. Conf. on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Milan, 2017.
    76. 76)
      • 76. Clement-Nyns, K., Haesen, E., Driesen, J.: ‘The impact of charging plug-in hybrid electric vehicles on a residential distribution grid’, IEEE Trans. Power Syst., 2010, 25, pp. 371380.
    77. 77)
      • 77. Luo, X., Chan, K.W.: ‘Real-time scheduling of electric vehicles charging in low-voltage residential distribution systems to minimise power losses and improve voltage profile’, IET Gener. Transm. Distrib., 2014, 8, pp. 516529.
    78. 78)
      • 78. Tavakoli, A., Negnevitsky, M., Nguyen, D.T., et al: ‘Energy exchange between electric vehicle load and wind generating utilities’, IEEE Trans. Power Syst., 2016, 31, pp. 12481258.
    79. 79)
      • 79. Zaidi, A.H.: ‘Optimal electric vehicle load management for minimization of losses’. 2015 Power Generation Systems and Renewable Energy Technologies (Pgsret-2015), Islamabad, Pakistan, 2015, pp. 261266.
    80. 80)
      • 80. Brooks, A., Lu, E., Reicher, D., et al: ‘Demand dispatch’, 2010.
    81. 81)
      • 81. Sortomme, E., El-Sharkawi, M.A.: ‘Optimal scheduling of vehicle-to-grid energy and ancillary services’, IEEE Trans. Smart Grid, 2012, 3, pp. 351359.
    82. 82)
      • 82. Manbachi, M., Farhangi, H., Palizban, A., et al: ‘A novel volt-VAR optimization engine for smart distribution networks utilizing vehicle to grid dispatch’, Int. J. Electr. Power, 2016, 74, pp. 238251.
    83. 83)
      • 83. Rogers, A., Henderson, A., Wang, X., et al: ‘Compressed air energy storage: thermodynamic and economic review’. 2014 IEEE Pes General Meeting – Conf. & Exposition, National Harbor, MD, USA, 2014.
    84. 84)
      • 84. de Hoog, J., Valentin, M., Derek, C.J., et al: ‘The importance of spatial distribution when analysing the impact of electric vehicles on voltage stability in distribution networks’, Energy Syst., 2014, 6, (1), pp. 6384(in English).
    85. 85)
      • 85. Manbachi, M., Sadu, A., Farhangi, H., et al: ‘Impact of EV penetration on volt–VAR optimization of distribution networks using real-time co-simulation monitoring platform’, Appl. Energy, 2016, 169, pp. 2839.
    86. 86)
      • 86. Green, R.C., Wang, L., Alam, M.: ‘The impact of plug-in hybrid electric vehicles on distribution networks: a review and outlook’. IEEE PES General Meeting, Providence, RI, USA, 2010, pp. 18.
    87. 87)
      • 87. Raghavan, S.S., Khaligh, A.: ‘Impact of plug-in hybrid electric vehicle charging on a distribution network in a smart grid environment’. 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 2012, pp. 17.
    88. 88)
      • 88. Weiller, C.: ‘Plug-in hybrid electric vehicle impacts on hourly electricity demand in the United States’, Energy Policy, 2011, 39, pp. 37663778.
    89. 89)
      • 89. Ortega-Vazquez, M.A., Bouffard, F., Silva, V.: ‘Electric vehicle aggregator/system operator coordination for charging scheduling and services procurement’, IEEE Trans. Power Syst., 2013, 28, pp. 18061815.
    90. 90)
      • 90. Clement, K., Haesen, E., Driesen, J.: ‘Coordinated charging of multiple plug-in hybrid electric vehicles in residential distribution grids’. 2009 IEEE/PES Power Systems Conf. and Exposition, Seattle, WA, USA, 2009, pp. 17.
    91. 91)
      • 91. Acha, S., Green, T.C., Shah, N.: ‘Effects of optimised plug-in hybrid vehicle charging strategies on electric distribution network losses’. IEEE PES T&D 2010, New Orleans, LA, USA, 2010, pp. 16.
    92. 92)
      • 92. Kisacikoglu, M.C., Ozpineci, B., Tolbert, L.M.: ‘Effects of V2G reactive power compensation on the component selection in an EV or PHEV bidirectional charger’. 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA, 2010, pp. 870876.
    93. 93)
      • 93. Kisacikoglu, M.C., Ozpineci, B., Tolbert, L.M.: ‘Reactive power operation analysis of a single-phase EV/PHEV bidirectional battery charger’. 8th Int. Conf. on Power Electronics – ECCE, Asia, 2011, pp. 585592.
    94. 94)
      • 94. Kisacikoglu, M.C., Ozpineci, B., Tolbert, L.M.: ‘Examination of a PHEV bidirectional charger system for V2G reactive power compensation’. 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conf. and Exposition (APEC), Palm Springs, CA, USA, 2010, pp. 458465.
    95. 95)
      • 95. Fasugba, M.A., Krein, P.T.: ‘Gaining vehicle-to-grid benefits with unidirectional electric and plug-in hybrid vehicle chargers’. 2011 IEEE Vehicle Power and Propulsion Conf., Chicago, IL, USA, 2011, pp. 16.
    96. 96)
      • 96. Taghizadeh, S., Hossain, M.J., Lu, J., et al: ‘A unified multi-functional on-board EV charger for power-quality control in household networks’, Appl. Energy, 2018, 215, pp. 186201.
    97. 97)
      • 97. Liu, H., Hu, Z., Song, Y., et al: ‘Decentralized vehicle-to-grid control for primary frequency regulation considering charging demands’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 34803489.
    98. 98)
      • 98. Liu, H., Hu, Z., Song, Y., et al: ‘Vehicle-to-grid control for supplementary frequency regulation considering charging demands’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 31103119.
    99. 99)
      • 99. Yang, W., Wang, J., Zhang, Z., et al: ‘Simulation of electric vehicle charging station and harmonic treatment’. 2012 Int. Conf. on Systems and Informatics (ICSAI2012), Yantai, China, 2012, pp. 609613.
    100. 100)
      • 100. Farzin, H., Fotuhi-Firuzabad, M., Moeini-Aghtaie, M.: ‘Reliability studies of modern distribution systems integrated with renewable generation and parking lots’, IEEE Trans. Sustain. Energy, 2017, 8, pp. 431440.
    101. 101)
      • 101. Xu, N.Z., Chung, C.Y.: ‘Reliability evaluation of distribution systems including vehicle-to-home and vehicle-to-grid’, IEEE Trans. Power Syst., 2016, 31, pp. 759768.
    102. 102)
      • 102. Zhang, R., Cheng, X., Yang, L.: ‘Flexible energy management protocol for cooperative EV-to-EV charging’, IEEE Trans. Intell. Transp. Syst., 2018, 20, pp. 172184.
    103. 103)
      • 103. Mohamed, A., Salehi, V., Ma, T., et al: ‘Real-time energy management algorithm for plug-in hybrid electric vehicle charging parks involving sustainable energy’, IEEE Trans. Sustain. Energy, 2014, 5, (2), pp. 577586.
    104. 104)
      • 104. Wang, M., Ismail, M., Zhang, R., et al: ‘A semi-distributed V2V fast charging strategy based on price control’. 2014 IEEE Global Communications Conf. (GLOBECOM), Austin, TX, USA, 2014, pp. 45504555.
    105. 105)
      • 105. Global EV Outlook 2017 – International Energy Agency.
    106. 106)
      • 106. Zhang, X., Liang, Y., Yu, E., et al: ‘Review of electric vehicle policies in China: content summary and effect analysis’, Renew. Sustain. Energy Rev., 2017, 70, pp. 698714.
    107. 107)
      • 107. Lucas, A.: ‘Fast charging diversity impact on total harmonic distortion due to phase cancellation effect’, 2017.
    108. 108)
      • 108. Thiringer, T., Haghbin, S.: ‘Power quality issues of a battery fast charging station for a fully-electric public transport system in Gothenburg city’, Batteries, 2015, 1, (1), pp. 2233.
    109. 109)
      • 109. Hermann, de M.: ‘Analysis of power quality through smart EV charging processes’, 2017.
    110. 110)
      • 110. Un-Noor, F., Padmanaban, S., Mihet-Popa, L., et al: ‘A comprehensive study of key electric vehicle (EV) components, technologies, challenges, impacts, and future direction of development’, Energies, 2017, 10, p. 1217.
    111. 111)
      • 111. Miveh, M.R., Rahmat, M.F., Ghadimi, A.A., et al: ‘Power quality improvement in autonomous microgrids using multi-functional voltage source inverters: a comprehensive review’, J. Power Electron., 2015, 15, pp. 10541065.
    112. 112)
      • 112. Chellaswamy, C., Ramesh, R.: ‘Future renewable energy option for recharging full electric vehicles’, Renew. Sustain. Energy Rev., 2017, 76, pp. 824838.
    113. 113)
      • 113. Hannan, M., Hoque, M., Mohamed, A., et al: ‘Review of energy storage systems for electric vehicle applications: issues and challenges’, Renew. Sustain. Energy Rev., 2017, 69, pp. 771789.
    114. 114)
      • 114. Ahmadian, A., Sedghi, M., Elkamel, A., et al: ‘Plug-in electric vehicle batteries degradation modeling for smart grid studies: review, assessment and conceptual framework’, Renew. Sustain. Energy Rev., 2017.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2018.5023
Loading

Related content

content/journals/10.1049/iet-est.2018.5023
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address