Model-based optimal parameter identification incorporating C-rate, state of charge and temperature effect for advance battery management system in electric vehicles

Model-based optimal parameter identification incorporating C-rate, state of charge and temperature effect for advance battery management system in electric vehicles

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Electrical Systems in Transportation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The battery management system in electrified transportation requires an accurate battery model for online state estimation of the battery. The parameters of the battery model depend upon state of charge, C-rate, and temperature. A detailed battery model defined by 31 polynomial coefficients is used for determination of battery parameters. The parameter estimation is formulated as an optimisation problem and six different meta-heuristic optimisation techniques are utilised for solving it. The efficiency of optimisation techniques is compared in terms of solution quality, computation efficiency, and convergence characteristics. Further, their performance is analysed statistically using parametric (t-test) and non-parametric tests (Wilcoxon test). The parameters values estimated by applying optimisation techniques are cross-validated with value of parameters extracted using standard constant-current pulse charge–discharge test to establish the effectiveness of the proposed approach.


    1. 1)
      • 1. Ambrose, H., Kendall, A.: ‘Effects of battery chemistry and performance on the life cycle greenhouse gas intensity of electric mobility’, Transp. Res. D Transp. Environ., 2016, 47, pp. 182194.
    2. 2)
      • 2. Rahimi-Eichi, H., Ojha, U., Baronti, F., et al: ‘Battery management system: an overview of its application in the smart grid and electric vehicles’, IEEE Ind. Electron. Mag., 2013, 7, (2), pp. 416.
    3. 3)
      • 3. Sangwan, V., Kumar, R., Rathore, A.K.: ‘State-of-charge estimation for li-ion battery using extended Kalman filter (EKF) and central difference Kalman filter (CDKF)’. 2017 IEEE Industry Applications Society Annual Meeting, Cincinnati, USA, 2017, pp. 16.
    4. 4)
      • 4. Chen, S., Gooi, H.B., Xia, N., et al: ‘Modelling of lithium-ion battery for online energy management systems’, IET Electr. Syst. Transp., 2012, 2, (4), pp. 202210.
    5. 5)
      • 5. Feng, F., Lu, R., Wei, G., et al: ‘Identification and analysis of model parameters used for lifepo4 cells series battery pack at various ambient temperature’, IET Electr. Syst. Transp., 2016, 6, (2), pp. 5055.
    6. 6)
      • 6. Plett, G.L.: ‘Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification’, J. Power Sources, 2004, 134, (2), pp. 262276.
    7. 7)
      • 7. Hu, C., Youn, B.D., Chung, J.: ‘A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation’, Appl. Energy, 2012, 92, pp. 694704.
    8. 8)
      • 8. Yang, W.J., Yu, D.H., Kim, Y.B.: ‘Parameter estimation of lithium-ion batteries and noise reduction using an H∞ filter’, J. Mech. Sci. Technol., 2013, 27, (1), pp. 247256.
    9. 9)
      • 9. Plett, G.L.: ‘Recursive approximate weighted total least squares estimation of battery cell total capacity’, J. Power Sources, 2011, 196, (4), pp. 23192331.
    10. 10)
      • 10. Kim, J., Lee, I., Tak, Y., et al: ‘State-of-health diagnosis based on hamming neural network using output voltage pattern recognition for a PEM fuel cell’, Int. J. Hydrog. Energy, 2012, 37, (5), pp. 42804289.
    11. 11)
      • 11. Kumar, P., Bauer, P.: ‘Parameter extraction of battery models using multiobjective optimization genetic algorithms’. Proc. EPE-PEMC 2010: 14th Int. Power Electronics and Motion Control Conf., Ohrid, Macedonia, 2010..
    12. 12)
      • 12. Thirugnanam, K., Reena, E., Joy, T., et al: ‘Mathematical modeling of li-ion battery using genetic algorithm approach for V2G applications’, IEEE Trans. Energy Convers., 2014, 29, (2), pp. 332343.
    13. 13)
      • 13. Malik, A., Zhang, Z., Agarwal, R.K.: ‘Extraction of battery parameters using a multi-objective genetic algorithm with a non-linear circuit model’, J. Power Sources, 2014, 259, pp. 7686.
    14. 14)
      • 14. Brand, J., Zhang, Z., Agarwal, R.K.: ‘Extraction of battery parameters of the equivalent circuit model using a multi-objective genetic algorithm’, J. Power Sources, 2014, 247, pp. 729737.
    15. 15)
      • 15. Wolpert, D.H., Macready, W.G.: ‘No free lunch theorems for optimization’, IEEE Trans. Evol. Comput., 1997, 1, (1), pp. 6782.
    16. 16)
      • 16. Mousavi, S.M., Nikdel, M.: ‘Various battery models for various simulation studies and applications’, Renew. Sust. Energy Rev., 2014, 32, pp. 477485.
    17. 17)
      • 17. Seaman, A., Dao, T.S., McPhee, J.: ‘A survey of mathematics-based equivalent circuit and electrochemical battery models for hybrid and electric vehicle simulation’, J. Power Sources, 2014, 256, pp. 410423.
    18. 18)
      • 18. Lam, L.: ‘A practical circuit-based model for state of health estimation of li-ion battery cells in electric vehicles’. Master of Science thesis, University of Technology Delft, 2011, 10.
    19. 19)
      • 19. Lu, D., Tao, J., Yan, P., et al: ‘Formation of reversible solid electrolyte interface on graphite surface from concentrated electrolytes’, Nano Lett., 2017, 17, (3), pp. 16021609.
    20. 20)
      • 20. Berzi, L., Delogu, M., Pierini, M.: ‘Development of driving cycles for electric vehicles in the context of the city of florence’, Transp. Res. D Transp. Environ., 2016, 47, pp. 299322.
    21. 21)
      • 21. Corti, A., Manzoni, V., Savaresi, S.M.: ‘Vehicle's energy estimation using low frequency speed signal’. 2012 15th Int. IEEE Conf. Intelligent Transportation Systems (ITSC), Anchorage, AK, USA, 2012, pp. 626631.
    22. 22)
      • 22. Hu, X., Li, S., Peng, H.: ‘A comparative study of equivalent circuit models for li-ion batteries’, J. Power Sources, 2012, 198, pp. 359367.
    23. 23)
      • 23. Sangwan, V., Kumar, R., Rathore, A.: ‘Estimation of battery parameters of the equivalent circuit model using grey wolf optimization’. 2016 IEEE 6th Int. Conf. Power Systems (ICPS), New Delhi, India, 2016, pp. 16.
    24. 24)
      • 24. Sangwan, V., Sharma, A., Kumar, R., et al: ‘Equivalent circuit model parameters estimation of li-ion battery: C-rate, SOC and temperature effects’. 2016 IEEE Int. Conf. Power Electronics, Drives and Energy Systems (PEDES), Trivandrum, India, 2016, pp. 16.
    25. 25)
      • 25. Zhang, H., Chow, M.Y.: ‘Comprehensive dynamic battery modeling for PHEV applications’. IEEE PES General Meeting, Providence, RI, USA, 2010, pp. 16.
    26. 26)
      • 26. Bauer, P., Lam, L., Bhattacharya, S., et al: ‘A practical circuit-based model for state of health estimation of Li-ion battery cells in electric vehicles: report’ (University of Technology, Delft, Netherlands, 2012).
    27. 27)
      • 27. Chen, M., Rincón-Mora, G.: ‘Accurate electrical battery model capable of predicting runtime and I–V performance’, IEEE Trans. Energy Convers., 2006, 21, (2), pp. 504511.
    28. 28)
      • 28. Verbrugge, M.W., Conell, R.S.: ‘Electrochemical and thermal characterization of battery modules commensurate with electric vehicle integration’, J. Electrochem. Soc., 2002, 149, (1), pp. A45A53.
    29. 29)
      • 29. Goldberg, D.E., Holland, J.H.: ‘Genetic algorithms and machine learning’, Mach. Learn., 1988, 3, (2), pp. 9599.
    30. 30)
      • 30. Eberhart, R.C., Kennedy, J.: ‘A new optimizer using particle swarm theory’. Proc. Sixth Int. Symp. Micro Machine and Human Science, vol. 1, New York, NY, 1995, pp. 3943.
    31. 31)
      • 31. Storn, R., Price, K.: ‘Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces’, J. Global Optim., 1997, 11, (4), pp. 341359.
    32. 32)
      • 32. Rao, R., Savsani, V., Balic, J.: ‘Teaching–learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problems’, Eng. Optim., 2012, 44, (12), pp. 14471462.
    33. 33)
      • 33. Mirjalili, S., Mirjalili, S.M., Lewis, A.: ‘Grey wolf optimizer’, Adv. Eng. Softw., 2014, 69, pp. 4661.
    34. 34)
      • 34. Bansal, J.C., Sharma, H., Jadon, S.S., et al: ‘Spider monkey optimization algorithm for numerical optimization’, Memet. Comput., 2014, 6, (1), pp. 3147.
    35. 35)
      • 35. Sharma, A., Sharma, A., Panigrahi, B., et al: ‘Ageist spider monkey optimization algorithm’, Swarm Evol. Comput., 2016, 28, pp. 5877.
    36. 36)
      • 36. Zheng, F., Xing, Y., Jiang, J., et al: ‘Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries’, Appl. Energy, 2016, 183, pp. 513525.
    37. 37)
      • 37. Ng, K.S., Moo, C.S., Chen, Y.P., et al: ‘Enhanced Coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries’, Appl. Energy, 2009, 86, (9), pp. 15061511.
    38. 38)
      • 38. Jackey, R., Saginaw, M., Sanghvi, P., et al: ‘Battery model parameter estimation using a layered technique: an example using a lithium iron phosphate cell’, SAE Technical Paper, 2013..

Related content

This is a required field
Please enter a valid email address