Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free SMES/battery hybrid energy storage system based on bidirectional Z-source inverter for electric vehicles

This study proposes a novel hybrid energy storage system (HESS) composed of a battery pack and a superconducting magnetic energy storage (SMES) for electric vehicle. Typically, the SMES has a higher power density and lower energy density than other energy storage devices, while battery has higher energy density. Thus, the overall HESS performance can be increased in power and energy density by combining SMES and batteries. The proposed HESS is designed based on bidirectional Z-source inverter (ZSI). Compared to other SMES/battery-based HESS topologies that are two stage designs (including DC/DC and AC/DC converters), in this topology, SMES and battery can be incorporated into the Z-source network which results in lower cost and improved HESS performance. Furthermore, the battery converter has been eliminated due to the buck/boost feature of the ZSI. The fuzzy control method and filters are used to distribute power between the SMES and battery. This study also describes the proposed HESS performance principles and its operation in different modes.

References

    1. 1)
      • 18. Li, J., Zhang, M., Yang, Q., et al: ‘SMES/battery hybrid energy storage system for electric buses’, IEEE Trans. Appl. Supercond., 2016, 26, (4), pp. 15.
    2. 2)
      • 6. Thackeray, M.M., Wolverton, C., Isaacs, E.D.: ‘Electrical energy storage for transportation – approaching the limits of, and going beyond, lithium-ion batteries’, Energy Environ. Sci., 2012, 5, (7), pp. 78547863.
    3. 3)
      • 24. Sen, P.C.: ‘Principles of electric machines and power electronics’ (John Wiley & Sons, New York, USA, 2013, 3nd edn.).
    4. 4)
      • 19. Peng, F.Z., Shen, M., Holland, K.: ‘Application of Z-source inverter for traction drive of fuel cell–battery hybrid electric vehicles’, IEEE Trans. Power Electron., 2007, 22, (3), pp. 10541061.
    5. 5)
      • 10. Ise, T., Kita, M., Taguchi, A.: ‘A hybrid energy storage with a SMES and secondary battery’, IEEE Trans. Appl. Supercond., 2005, 15, (2), pp. 19151918.
    6. 6)
      • 23. Peng, F.Z.: ‘Z-source inverter’, IEEE Trans. Ind. Appl., 2003, 39, (2), pp. 504510.
    7. 7)
      • 13. Suzuki, S., Baba, J., Shutoh, K., et al: ‘Effective application of superconducting magnetic energy storage (SMES) to load leveling for high speed transportation system’, IEEE Trans. Appl. Supercond., 2004, 14, (2), pp. 713716.
    8. 8)
      • 15. Wang, S., Tang, Y., Shi, J., et al: ‘Design and advanced control strategies of a hybrid energy storage system for the grid integration of wind power generations’, IET Renew. Power Gener., 2014, 9, (2), pp. 8998.
    9. 9)
      • 4. Khaligh, A., Li, Z.: ‘Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in energy source applications: state of the art’, IEEE Trans. Veh. Technol., 2010, 59, (6), pp. 28062814.
    10. 10)
      • 5. Ibrahim, H., Ilinca, A., Perron, J.: ‘Energy storage systems–characteristics and comparisons’, Renew. Sustain. Energy Rev., 2008, 15, (5), pp. 12211250.
    11. 11)
      • 14. Shim, J.W., Cho, Y., Kim, S.J., et al: ‘Synergistic control of SMES and battery energy storage for enabling dispatchability of renewable energy sources’, IEEE Trans. Appl. Supercond., 2013, 23, (3), Art. no. 5701205.
    12. 12)
      • 11. Ferreira, H.L., Garde, R., Fulli, G., et al: ‘Characterisation of electrical energy storage technologies’, Energy, 2013, 53, pp. 288298.
    13. 13)
      • 25. Wu, B., Narimani, M.: ‘High-power converters and AC drives’ (John Wiley & Sons, Hoboken, NJ, 2017).
    14. 14)
      • 8. Cao, J., Emadi, A.: ‘A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles’, IEEE Trans. Power Electron., 2012, 27, (1), pp. 122132.
    15. 15)
      • 16. Li, J., Yang, Q., Robinson, F., et al: ‘Design and test of a new droop control algorithm for a SMES/battery hybrid energy storage system’, Energy, 2017, 118, pp. 11101122.
    16. 16)
      • 17. Li, J., Xiong, R., Yang, Q., et al: ‘Design/test of a hybrid energy storage system for primary frequency control using a dynamic droop method in an isolated microgrid power system’, Appl. Energy, 2017, 201, pp. 257269.
    17. 17)
      • 12. Nomura, S., Shintomi, T., Akita, S., et al: ‘Technical and cost evaluation on SMES for electric power compensation’, IEEE Trans. Appl. Supercond., 2010, 20, (3), pp. 13731378.
    18. 18)
      • 7. Kuperman, A., Aharon, I.: ‘Battery–ultracapacitor hybrids for pulsed current loads: a review’, Renew. Sustain. Energy Rev., 2011, 15, (2), pp. 981992.
    19. 19)
      • 21. Hu, S., Liang, Z., He, X.: ‘Ultracapacitor-battery hybrid energy storage system based on the asymmetric bidirectional Z-source topology for EV’, IEEE Trans. Power Electron., 2016, 31, (11), pp. 74897498.
    20. 20)
      • 20. Liu, Y., Ge, B., Abu-Rub, H., et al: ‘Control and design of battery-assisted quasi-Z-source inverter for grid-tie photovoltaic power generation’, IEEE Trans. Sustain. Energy, 2013, 4, (4), pp. 9941001.
    21. 21)
      • 9. Nie, Z., Xiao, X., Kang, Q., et al: ‘SMES-battery energy storage system for conditioning outputs from direct drive linear wave energy converters’, IEEE Trans. Appl. Supercond., 2013, 23, (3), Art. no. 5000705.
    22. 22)
      • 1. Chau, K.T.: ‘Electric vehicle machines and drives: design, analysis and application’ (Wiley-IEEE Press, Hoboken, USA, 2015).
    23. 23)
      • 3. Ostadi, A., Kazerani, M.: ‘Optimal sizing of the battery unit in a plug-in electric vehicle’, IEEE Trans. Veh. Technol., 2014, 63, (7), pp. 30773084.
    24. 24)
      • 2. Emadi, A.: ‘Advanced electric drive vehicles’ (CRC Press, Boca Raton, FL, 2014).
    25. 25)
      • 22. Hu, S., Liang, Z., Fan, D., et al: ‘Hybrid ultracapacitor-battery energy storage system based on quasi-Z-source topology and enhanced frequency dividing coordinated control for EV’, IEEE Trans. Power Electron., 2016, 31, (11), pp. 75987610.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2017.0100
Loading

Related content

content/journals/10.1049/iet-est.2017.0100
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address