Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Voltage-dependent modelling of fast charging electric vehicle load considering battery characteristics

Electric vehicle (EV) integration into the power grids is increasing rapidly. To analyse the effect of charging of EVs on the distribution system, most of the literature considered EV load as constant power load (CPL) which do not represent the exact behaviour of these uncertain loads. An accurate EV load modelling is developed by determining the relationship between power consumption by EV, grid voltage and state of charges of fast charging EV load. The derived relationship is validated by simulating a realistic fast charging system to obtain a battery charging behaviour characteristics and is curve fitted on standard exponential load model. Further the impact of stochastic 24-h load profile of fast charging EVs considering the exponential load model is investigated on IEEE 123 bus distribution system and is compared with the constant impedance-constant current-constant power (ZIP) load model and CPL model. The stochastic 24-h load is developed using queuing analysis-based method. The results show that the exponential load model is the better representation of fast charging EV load and 10.19% of the reduction in annual energy demand and 11.19% of the reduction in annual energy loss is observed for exponential load model compared to the existing CPL model.

References

    1. 1)
      • 26. Price, W., Taylor, C., Rogers, G.: ‘Standard load models for power flow and dynamic performance simulation’, IEEE Trans. Power Syst., 1995, 10, (3), pp. 13021313.
    2. 2)
      • 28. Bhat, U.N.: ‘An introduction to queueing theory: modeling and analysis in applications’ (Birkhäuser, Boston, USA, 2015).
    3. 3)
      • 9. Zhang, P., Qian, K., Zhou, C., et al: ‘A methodology for optimization of power systems demand due to electric vehicle charging load’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 16281636.
    4. 4)
      • 6. Darabi, Z., Ferdowsi, M.: ‘Aggregated impact of plug-in hybrid electric vehicles on electricity demand profile’, IEEE Trans. Sustain. Energy, 2011, 2, (4), pp. 501508.
    5. 5)
      • 33. ‘The 2011 Transportation Survey’. Available at http://dmg.utoronto.ca/reports/ttsreports.html.
    6. 6)
      • 13. Shun, T., Kunyu, L., Xiangning, X., et al: ‘Charging demand for electric vehicle based on stochastic analysis of trip chain’, IET Gener. Transm. Distrib., 2016, 10, (11), pp. 26892698.
    7. 7)
      • 24. Tremblay, O., Dessaint, L.-A.: ‘Experimental validation of a battery dynamic model for EV applications’, World Electr. Veh. J., 2009, 3, (1), pp. 110.
    8. 8)
      • 20. Dubey, A., Santaso, S., Cloud, M.P.: ‘Average-value model of electric vehicle chargers’, IEEE Trans. Smart Grid, 2013, 4, (3), pp. 15491557.
    9. 9)
      • 19. Haidar, A.M., Muttaqi, K.M.: ‘Behavioral characterization of electric vehicle charging loads in a distribution power grid through modeling of battery chargers’, IEEE Trans. Ind. Appl., 2016, 52, (1), pp. 483492.
    10. 10)
      • 12. Neaimeh, M., Wardle, R., Jenkins, A.M., et al: ‘A probabilistic approach to combining smart meter and electric vehicle charging data to investigate distribution network impacts’, Appl. Energy, 2015, 157, pp. 688698.
    11. 11)
      • 29. ‘IEEE PES Distribution Test Feeders, 123-Bus Feeder’. Available at http://ewh.ieee.org/soc/pes/dsacom/testfeeders/index.html, accessed 2 May 2017.
    12. 12)
      • 4. Papadopoulos, P., Skarvelis-Kazakos, S., Grau, I., et al: ‘Electric vehicles’ impact on British distribution networks’, IET Electr. Syst. Transp., 2012, 2, (3), pp. 91102.
    13. 13)
      • 22. Arancibia, A., Strunz, K., Mancilla-David, F.: ‘A unified single-and three-phase control for grid connected electric vehicles’, IEEE Trans. Smart Grid, 2013, 4, (4), pp. 17801790.
    14. 14)
      • 7. Shafiee, S., Fotuhi-Firuzabad, M., Rastegar, M.: ‘Investigating the impacts of plug-in hybrid electric vehicles on power distribution systems’, IEEE Trans. Smart Grid, 2013, 4, (3), pp. 13511360.
    15. 15)
      • 25. Doughty, D.H., Pesaran, A.A.: ‘Vehicle battery safety roadmap guidance’, No. NREL/SR-5400-54404'. National Renewable Energy Laboratory (NREL), Golden, CO., 2012.
    16. 16)
      • 2. Yilmaz, M., Krein, P.T.: ‘Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles’, IEEE Trans. Power Electron., 2013, 28, (5), pp. 21512169.
    17. 17)
      • 32. ‘Union of concerned scientists’. Available at http://www.ucsusa.org/clean-vehicles/electric-vehicles/bev-phev-range-electric-car#.V2Jt-rtcSkq, accessed 2 May 2017.
    18. 18)
      • 8. Li, G., Zhang, X.-P.: ‘Modeling of plug-in hybrid electric vehicle charging demand in probabilistic power flow calculations’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 492499.
    19. 19)
      • 3. Lassila, J., Tikka, V., Haakana, J., et al: ‘Electric cars as part of electricity distribution–who pays, who benefits?’, IET Electr. Syst. Transp., 2012, 2, (4), pp. 186194.
    20. 20)
      • 18. Haidar, A.M., Muttaqi, K.M., Haque, M.H.: ‘Multistage time-variant electric vehicle load modelling for capturing accurate electric vehicle behaviour and electric vehicle impact on electricity distribution grids’, IET Gener. Transm. Distrib., 2015, 9, (16), pp. 27052716.
    21. 21)
      • 21. Dharmakeerthi, C., Mithulananthan, N., Saha, T.: ‘Modeling and planning of EV fast charging station in power grid’. Proc. Power and Energy Society General Meeting, San Diego, CA, USA, 2012, pp. 18.
    22. 22)
      • 11. Leou, R.C., Teng, J.H., Su, C.L.: ‘Modelling and verifying the load behaviour of electric vehicle charging stations based on field measurements’, IET Gener. Transm. Distrib., 2015, 9, (11), pp. 11121119.
    23. 23)
      • 10. Tehrani, N.H., Wang, P.: ‘Probabilistic estimation of plug-in electric vehicles charging load profile’, Electr. Power Syst. Res., 2015, 124, pp. 133145.
    24. 24)
      • 27. Kersting, W.H.: ‘Distribution system modeling and analysis’ (CRC Press, Washington D.C., 2012, 3rd edn. 2012).
    25. 25)
      • 31. Santos, A., McGuckin, N., Nakamoto, H.Y., et al: ‘Summary of travel trends: 2009 national household travel survey’. Technical Report, 2011.
    26. 26)
      • 30. OpenDSS Software. Available at http://www.sourceforge.net/projects/electricdss/.
    27. 27)
      • 5. Arias, A., Granada, M., Castro, C.A.: ‘Optimal probabilistic charging of electric vehicles in distribution systems’, IET Electr. Syst. Transp., 2017, 7, (3), pp. 246251.
    28. 28)
      • 23. Wu, R., Dewan, S.B., Slemon, G.R.: ‘A PWM ac-to-dc converter with fixed switching frequency’, IEEE Trans. Ind. Appl., 1990, 26, (5), pp. 880885.
    29. 29)
      • 17. Dharmakeerthi, C., Mithulananthan, N., Saha, T.: ‘Impact of electric vehicle fast charging on power system voltage stability’, Int. J. Electr. Power Energy Syst., 2014, 57, pp. 241249.
    30. 30)
      • 16. Etezadi-Amoli, M., Choma, K., Stefani, J.: ‘Rapid-charge electric-vehicle stations’, IEEE Trans. Power Deliv., 2010, 25, (3), pp. 18831887.
    31. 31)
      • 14. Hafez, O., Battacharya, K.: ‘Queuing analysis based PEV load modeling considering battery charging behavior and their impact on distribution system operation’, IEEE Trans. Smart Grid, 2016, 9, (1), pp. 261273.
    32. 32)
      • 15. Etezadi-Amoli, M., Choma, K., Stefani, J.: ‘Letter to the editor: electric vehicle demand model for load flow studies’, Electr. Power Compon. Syst., 2009, 37, (5), pp. 577582.
    33. 33)
      • 1. Moradizoz, M., Moghaddam, M.P., Haghifam, M., et al: ‘A multi-objective optimization problem for allocating parking lots in a distribution network’, Int. J. Electr. Power Energy Syst., 2013, 46, pp. 115122.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2017.0096
Loading

Related content

content/journals/10.1049/iet-est.2017.0096
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address