Your browser does not support JavaScript!

access icon openaccess SiC/GaN power semiconductor devices: a theoretical comparison and experimental evaluation under different switching conditions

(This study is for special section ‘Design, modelling and control of electric drives for transportation applications’) The conduction and switching losses of silicon carbide (SIC) and gallium nitride (GaN) power transistors are compared in this study. Voltage rating of commercial GaN power transistors is <650 V, whereas that of SiC power transistors is <1200 V. This study begins with a theoretical analysis that examines how the characteristics of a 1200 V SiC metal–oxide–semiconductor field-effect transistor (MOSFET) change if device design is re-optimised for 600 V blocking voltage. Afterwards, a range of commercial devices [1200 V SIC junction gate FET, 1200 V SiC­MOSFET, 650 V SiC-MOSFET and 650 V GaN high-electron-mobility transistor (HEMT)] with the same current rating are characterised and their conduction losses, inter-electrode capacitances and switching energy E sw are compared, where it is shown that GaN-HEMT has smaller conduction and switching losses than SiC devices. Finally, a zero-voltage switching circuit is used to evaluate all the devices, where device only produces turn-OFF switching losses and it is shown that GaN-HEMT has less switching losses than SiC device in this soft switching mode. It is also shown in this study that 1200 V SiC-MOSFET has smaller conduction and switching losses than 650 V SiC-MOSFET.


    1. 1)
      • 16. Global Power Technologies Group: ‘GP1T072A060B datasheet’, 2016.
    2. 2)
      • 5. Chinthavali, M., Otaduy, P., Ozpineci, B.: ‘Comparison of Si and SiC inverters for IPM traction drive’. Proc. 2010 IEEE Energy Conversion Congress and Exposition, September 2010, pp. 33603365.
    3. 3)
      • 2. Wang, J.: ‘Practical design considerations of power electronics in hybrid and fuel cell vehicles’. Proc. 2008 IEEE Vehicle Power and Propulsion Conf., September 2008, pp. 16.
    4. 4)
      • 19. Li, K., Videt, A., Idir, N.: ‘Multiprobe measurement method for voltage-dependent capacitances of power semiconductor devices in high voltage’, IEEE Trans. Power Electron., 2013, 28, (11), pp. 54145422.
    5. 5)
      • 8. Li, K., Evans, P., Johnson, M.: ‘Sic and gaN power transistors switching energy evaluation in hard and soft switching conditions’. Proc. 2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), November 2016, pp. 123128.
    6. 6)
      • 10. Baliga, B.: ‘Advanced high voltage power device concepts’ (Springer, 2011).
    7. 7)
      • 9. Lutz, J., Schlangenotto, H., Scheuermann, U., et al: ‘Semiconductor power devices’ (Springer, 2011).
    8. 8)
      • 11. Ueda, D., Takagi, H., Kano, G.: ‘A new vertical power MOSFET structure with extremely reduced on-resistance’, IEEE Trans. Electron Devices, 1985, 32, (1), pp. 26.
    9. 9)
      • 14. Friedrichs, P., Mitlehner, H., Dohnke, K.O., et al: ‘Sic power devices with low on-resistance for fast switching applications’. Proc. The 12th Int. Symp. Power Semiconductor Devices and ICs, 2000, pp. 213216.
    10. 10)
      • 4. Srdic, S., Zhang, C., Liang, X., et al: ‘A SiC-based power converter module for medium-voltage fast charger for plug-in electric vehicles’. Proc. 2016 IEEE Applied Power Electronics Conf. and Exposition (APEC), March 2016, pp. 27142719.
    11. 11)
      • 6. Acanski, M., Popovic-Gerber, J., Ferreira, J.A.: ‘Comparison of Si and gaN power devices used in PV module integrated converters’. Proc. 2011 IEEE Energy Conversion Congress and Exposition, September 2011, pp. 12171223.
    12. 12)
      • 13. Mousa, R.: ‘Caractérisation, modélisation et intégration de JFET de puissance en carbure de silicium dans des convertisseurs haute température et haute tension’. PhD thesis, L'INSA de Lyon, 2009.
    13. 13)
      • 17. Global Power Technologies Group: ‘GP1T080A120B datasheet’, 2016.
    14. 14)
      • 1. Allegre, A.L., Bouscayrol, A., Trigui, R.: ‘Flexible real-time control of a hybrid energy storage system for electric vehicles’, IET Electr. Syst. Transp., 2013, 3, (3), pp. 7985.
    15. 15)
      • 15. Wu, H., Chen, M., Gao, L., et al: ‘Thermal resistance analysis by numerical method for power device packaging’. Proc. 2012 13th Int. Conf. Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), August 2012, pp. 666670.
    16. 16)
      • 7. Li, K., Evans, P., Johnson, M.: ‘Sic/GaN power semiconductor devices theoretical comparison and experimental evaluation’. Proc. 2016 IEEE Vehicle Power and Propulsion Conf. (VPPC), October 2016, pp. 16.
    17. 17)
      • 12. Ruff, M., Mitlehner, H., Helbig, R.: ‘Sic devices: physics and numerical simulation’, IEEE Trans. Electron Devices, 1994, 41, (6), pp. 10401054.
    18. 18)
      • 3. Schülting, P., Rosekeit, M., Garikoitz, S., et al: ‘Potential of using gan devices within air cooled bidirectional battery chargers for electric vehicles’. Proc. 2015 IEEE 6th Int. Symp. Power Electronics for Distributed Generation Systems (PEDG), June 2015, pp. 16.
    19. 19)
      • 18. Chen, Z., Boroyevich, D., Burgos, R., et al: ‘Characterization and modeling of 1.2 kV, 20 A SiC MOSFETs’. Proc. 2009 IEEE Energy Conversion Congress and Exposition, September 2009, p. 14801487.

Related content

This is a required field
Please enter a valid email address