http://iet.metastore.ingenta.com
1887

Optimal probabilistic charging of electric vehicles in distribution systems

Optimal probabilistic charging of electric vehicles in distribution systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electrical Systems in Transportation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a probabilistic approach for the optimal charging of electric vehicles (EVs) in distribution systems is proposed. The costs of both demand and energy losses in the system are minimised, subjected to a set of constraints that consider EVs smart charging characteristics and operative aspects of the electric network. The stochastic driving patterns for EVs’ owners, battery capacity and active and reactive power demanded at load nodes are considered. The optimal charging of EVs connected to the system benefits the system's operation, as it does a strategy to minimise the cost of energy losses and evaluate the capability of the system to charge EVs’ batteries fully under certain penetration scenarios. Priority periods of EVs’ recharge and the variation of energy price contribute to an adequate demand response, assisting the network operator for complying with quality indices (decrement of power losses) set forward by regulatory entities and developing studies of risk analysis for decision making. On the other hand, there is a valuable participation of the EVs’ owners in improving the operation of the distribution system. Monte Carlo simulation (MCS) is used to assess the stochastic nature of the problem in a secondary (low voltage) distribution network.

References

    1. 1)
      • 1. Tan, M., Mohammed, O.A.: ‘Optimal charging of plug-in electric vehicles for a car-park infrastructure’, IEEE Trans. Ind. Appl., 2014, 50, (1), pp. 23232330.
    2. 2)
      • 2. Erol-Kantarci, M., Sarker, J., Mouftah, H.: ‘Quality of service in plug-in electric vehicle charging infrastructure’. IEEE Int. Electric Vehicle Conf. (IEVC), 2012, 2012, pp. 15.
    3. 3)
      • 3. Pillai, J., Bak-Jensen, B.: ‘Impacts of electric vehicle loads on power distribution systems’. IEEE Vehicle Power and Propulsion Conf. (VPPC), 2010, 2010, pp. 16.
    4. 4)
      • 4. Tan, J., Wang, L.: ‘Stochastic modeling of load demand of plug-in hybrid electric vehicles using fuzzy logic’. IEEE PES T&D Conf. and Exposition, 2014, 2014, pp. 15.
    5. 5)
      • 5. Shankar, R., Marco, J.: ‘Method for estimating the energy consumption of electric vehicles and plug-in hybrid electric vehicles under real-world driving conditions’, IET Intell. Transp. Syst., 2013, 7, (1), pp. 138150.
    6. 6)
      • 6. Erdinc, O., Mendes, T.D., Catalao, J.P.: ‘Impact of electric vehicle v2g operation and demand response strategies for smart households’. IEEE PES T&D Conf. and Exposition, 2014, 2014, pp. 15.
    7. 7)
      • 7. Papadopoulos, P., Skarvelis-Kazakos, S., Grau, I., et al: ‘Electric vehicles’ impact on British distribution networks’, IET Electr. Syst. Transp., 2012, 2, (3), pp. 91102.
    8. 8)
      • 8. Ortega-Vazquez, M.A.: ‘Optimal scheduling of electric vehicle charging and vehicle-to-grid services at household level including battery degradation and price uncertainty’, IET. Gener. Transm. Distrib., 2014, 8, (6), pp. 10071016.
    9. 9)
      • 9. Jin, C., Tang, J., Ghosh, P.: ‘Optimizing electric vehicle charging with energy storage in the electricity market’, IEEE Trans. Smart Grid, 2013, 4, (1), pp. 311320.
    10. 10)
      • 10. Xiang, Y., Tan, J., Wang, L.: ‘A particle swarm optimization based control strategy for plug-in hybrid electric vehicles at residential networks level’. IEEE PES T&D Conf. and Exposition, 2014, 2014, pp. 15.
    11. 11)
      • 11. Moeini-Aghtaie, M., Abbaspour, A., Fotuhi-Firuzabad, M., et al: ‘Optimized probabilistic phevs demand management in the context of energy hubs’, IEEE Trans. Power Deliv., 2015, 30, (2), pp. 9961006.
    12. 12)
      • 12. Khalkhali, K., Abapour, S., Moghaddas-Tafreshi, S. M., et al: ‘Application of data envelopment analysis theorem in plug-in hybrid electric vehicle charging station planning’, IET Gener. Transm. Distrib., 2015, 9, (7), pp. 666676.
    13. 13)
      • 13. Waddell, J., Rylander, M., Maitra, A., et al: ‘Impact of plug in electric vehicles on Manitoba Hydro's distribution system’. IEEE Electrical Power and Energy Conf. (EPEC), 2011, 2011, pp. 409414.
    14. 14)
      • 14. Hemphill, M.: ‘Electricity distribution system planning for an increasing penetration of plug-in electric vehicles in new south wales’. 22nd Australasian Universities Power Engineering Conf. (AUPEC), 2012, IEEE, 2012, pp. 16.
    15. 15)
      • 15. Masoum, A.S., Abu-Siada, A., Islam, S.: ‘Impact of uncoordinated and coordinated charging of plug-in electric vehicles on substation transformer in smart grid with charging stations’. IEEE PES Innovative Smart Grid Technologies Asia (ISGT), 2011, 2011, pp. 17.
    16. 16)
      • 16. Andres, A.L., Geovanny, M.G., Camila, P.G., et al: ‘Optimal charging schedule of electric vehicles considering variation of energy price’. IEEE PES Transmission & Distribution Conf. and Exposition-Latin America (PES T&D-LA), 2014, 2014, pp. 15.
    17. 17)
      • 17. Sharma, I., Cañizares, C.A., Bhattacharya, K.: ‘Modeling and impacts of smart charging PEVs in residential distribution systems’, Proc. IEEE Power Energy Soc. Gen. Meeting, 2012, pp. 18.
    18. 18)
      • 18. Deilami, S., Masoum, A.S., Moses, P.S., et al: ‘Real-time coordination of plug-in electric vehicle charging in smart grids to minimize power losses and improve voltage profile’, IEEE Trans. Smart Grid, 2011, 2, (3), pp. 456467.
    19. 19)
      • 19. Franco, J.F., Sanchez, M., Rider, M.J., et al: ‘Un modelo de optimización no lineal para el problema de la recarga de vehículos eléctricos híbridos en sistemas de distribución’. Anais do X Congreso Latinoamericano de Generación y Transporte de Energía Eléctrica (CLAGTEE 2013), paper 95, Viña del Mar, Chile, 2013, pp. 16.
    20. 20)
      • 20. Shaaban, M.F., Atwa, Y.M., El-Saadany, E.F.: ‘PEVs modeling and impacts mitigation in distribution networks’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 11221131.
    21. 21)
      • 21. Mehboob, N., Canizares, C., Rosenberg, C.: ‘Day-ahead dispatch of distribution feeders considering temporal uncertainties of PEVs’. IEEE PowerTech, 2015, Eindhoven, June 2015, pp. 16.
    22. 22)
      • 22. Rubinstein, R.Y., Kroese, D.P.: ‘Simulation and the Monte Carlo method, 707’ (John Wiley & Sons, 2011).
    23. 23)
      • 23. ‘Vehículos eléctricos’. Available at http://academia.utp.edu.co/planeamiento/sistemas-de-prueba/, April 2016.
    24. 24)
      • 24. GAMS Solver Description. Available at http://www.gams.com/solvers.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2016.0072
Loading

Related content

content/journals/10.1049/iet-est.2016.0072
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address