http://iet.metastore.ingenta.com
1887

Characterisation of the electric drive of EV: on-road versus off-road method

Characterisation of the electric drive of EV: on-road versus off-road method

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electrical Systems in Transportation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

For system design, analysis of global performance and energy management of electric vehicles (EVs), it is common to use the efficiency map of electric traction drive. The characterisation of the efficiency map with high accuracy is then an important issue. In this study, an on-road method and an off-road method are compared experimentally to determine the efficiency map of electric drive of EVs. The off-road method requires a dedicated experimental test bed, which is expensive and time consuming. The on-road method is achieved directly in-vehicle. Experimental data, recorded during an on-road driving cycle, are used to determine the efficiency map using non-intrusive measurements from global positioning system antenna, voltage and current sensors. A versatile experimental setup is used to compare both methods on the same platform. A maximal efficiency difference of 6% is achieved in most of the torque–speed plane. It is shown that, in an energetic point of view, both methods yield similar results.

References

    1. 1)
      • 1. Chan, C.C.: ‘Overview of electric, hybrid and fuel cell vehicles’, in Crolla, D. (Ed.): ‘Encyclopedia of automotive engineering’ (Wiley-Blackwell, 2015), pp. 971974.
    2. 2)
      • 2. Zhong, F., Martinez, O., Gormus, R., et al: ‘The reign of EV's? An economic analysis from consumer's perspective’, IEEE Electrification Mag., 2014, 2, (2), pp. 6171.
    3. 3)
      • 3. Khaligh, A., Li, Z.: ‘Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: state-of-the-art’, IEEE Trans. Veh. Technol., 2010, 59, (6), pp. 28062814.
    4. 4)
      • 4. Ehsani, M., Gao, Y., Gay, S.E., et al: ‘Modern electric, hybrid electric, and fuel cell vehicles’ (CRC Press, 2009, 2nd edn.).
    5. 5)
      • 5. Gao, D.W., Mi, C., Emadi, A.: ‘Modeling and simulation of electric and hybrid vehicles’, Proc. IEEE, 2007, 95, (4), pp. 729745.
    6. 6)
      • 6. Guzzella, L., Sciarretta, A.: ‘Vehicle propulsion systems, introduction to modelling and optimization’ (Springer-Verlag Berlin and Heidelberg GmbH & Co, 2015, 3rd edn.).
    7. 7)
      • 7. Lee, B., Lee, S., Cherry, J., et al: ‘Development of advanced light-duty powertrain and hybrid analysis tool’. SAE 2013 World Congress & Exhibition, 2013.
    8. 8)
      • 8. Vinot, E., Trigui, R., Cheng, Y., et al: ‘Improvement of an EVT-based HEV using dynamic programming’, IEEE Trans. Veh. Technol., 2014, 63, (1), pp. 4050.
    9. 9)
      • 9. Lazari, P., Wong, J., Chen, L.: ‘A computationally efficient design technique for electric-vehicle traction machines’, IEEE Trans. Ind. Appl., 2014, 50, (5), pp. 32033213.
    10. 10)
      • 10. Jurkovic, S., Rahman, K.M., Morgante, J.C., et al: ‘Induction machine design and analysis for general motor e-assist electrification technology’, IEEE Trans. Ind. Appl., 2015, 51, (1), pp. 631639.
    11. 11)
      • 11. Patil, R.M., Filipi, Z., Fathy, H.K.: ‘Comparison of supervisory control strategies for series plug-in hybrid electric vehicle powertrains through dynamic programming’, IEEE Trans. Control Syst. Technol., 2014, 22, (2), pp. 502509.
    12. 12)
      • 12. Mayet, C., Pouget, J., Bouscayrol, A., et al: ‘Influence of an energy storage system on the energy consumption of a diesel-electric locomotive’, IEEE Trans. Veh. Technol., 2014, 63, (3), pp. 10321040.
    13. 13)
      • 13. Chan, C.C., Bouscayrol, A., Chen, K.: ‘Electric, hybrid and fuel cell vehicles: architectures and modeling’, IEEE Trans. Veh. Technol., 2010, 59, (2), pp. 589598.
    14. 14)
      • 14. Buyukdegirmenci, V.T., Bazi, A.M., Krein, P.T.: ‘Evaluation of induction and PM synchronous machines using drive-cycle energy and loss minimization in traction application’, IEEE Trans. Ind. Appl., 2014, 50, (1), pp. 395403.
    15. 15)
      • 15. Estima, J.O., Marques Cardoso, A.J.: ‘Efficiency analysis of drive train topologies applied to electric/hybrid vehicles’, IEEE Trans. Veh. Technol., 2012, 61, (3), pp. 10211031.
    16. 16)
      • 16. Williamson, S.S., Lukic, S.M., Emadi, A.: ‘Comprehensive drive train efficiency analysis of hybrid electric and fuel cell vehicles based on motor-controller efficiency modelling’, IEEE Trans. Power Electron., 2006, 21, (3), pp. 730740.
    17. 17)
      • 17. Cao, W.: ‘Comparison of IEEE 112 and new IEC standard 60034-2-1’, IEEE Trans. Energy Convers., 2009, 24, (3), pp. 802808.
    18. 18)
      • 18. IEEE Std 112-1996: ‘IEEE standard test procedure for polyphase induction motors and generators’, 1997.
    19. 19)
      • 19. IEC 60349-2: ‘Electric traction – rotating electrical machines for rail and road vehicles – part 2: electronic converter-fed alternating current motors’, 2010.
    20. 20)
      • 20. CSA Std C390-93: ‘Energy efficiency test methods for three-phase induction motors’, 1993.
    21. 21)
      • 21. Bojoi, R., Armando, E., Pastorelli, M., et al: ‘Efficiency and loss mapping of AC motors using advanced testing tools’. 2016 XXII Int. Conf. on Electrical Machines (ICEM), 2016.
    22. 22)
      • 22. Boglietti, A., Cavagnino, A., Lazzari, M., et al: ‘International standards for the induction motor efficiency evaluation: a critical analysis of the stray-load loss determination’, IEEE Trans. Ind. Appl., 2004, 40, (5), pp. 12941301.
    23. 23)
      • 23. Moskalik, A., Dekraker, P., Kargul, J., et al: ‘Vehicle component benchmarking using a chassis dynamometer’, SAE Int. J. Mater. Manuf., 2015, 8, (3), pp. 869879.
    24. 24)
      • 24. Wang, R., Chen, Y., Feng, D., et al: ‘Development and performance characterization of an electric ground vehicle with independently actuated in-wheel motors’, J. Power Sources, 2011, 196, (8), pp. 39623971.
    25. 25)
      • 25. Kim, S., Park, S., Park, T., et al: ‘Investigation and experimental verification of a novel spoke-type ferrite-magnet motor for electric-vehicle traction drive applications’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 57635770.
    26. 26)
      • 26. Bohn, T., Duoba, M.: ‘Implementation of a non-intrusive in-vehicle engine torque sensor for benchmarking the Toyota Prius’. SAE 2005 World Congress & Exhibition, 2005.
    27. 27)
      • 27. Irimescu, A., Mihon, L., Pãdure, G.: ‘Automotive transmission efficiency measurement using a chassis dynamometer’, Int. J. Autom. Technol., 2011, 12, (4), pp. 555559.
    28. 28)
      • 28. Dépature, C., Lhomme, W., Bouscayrol, A., et al: ‘Efficiency map of the traction system of an electric vehicle from an on-road test drive’. 2014 IEEE Vehicle Power and Propulsion Conf. (VPPC), 2014.
    29. 29)
      • 29. ‘Tazzari zero website’. Available at http://www.tazzari-zero.com/, accessed 8 August 2016.
    30. 30)
      • 30. Letrouvé, T., Bouscayrol, A., Lhomme, W., et al: ‘Different models of a traction drive for an electric vehicle simulation’. 2010 IEEE Vehicle Power and Propulsion Conf. (VPPC), 2010.
    31. 31)
      • 31. Bouscayrol, A., Hautier, J.P., Lemaire-Semail, B.: ‘Graphic formalisms for the control of multi-physical energetic systems: COG and EMR’, in Roboam, X. (Ed.): ‘Systemic design methodologies for electrical energy systems: analysis, synthesis and management’ (John Wiley & Sons, 2012).
    32. 32)
      • 32. Castaings, A., Lhomme, W., Trigui, R., et al: ‘Practical control schemes of a battery/supercapacitor system for electric vehicle’, IET Electr. Syst. Transp., 2016, 6, (1), pp. 2026.
    33. 33)
      • 33. Lhomme, W., Trigui, R., Delarue, P., et al: ‘Switched causal modelling of transmission with clutch in hybrid electric vehicles’, IEEE Trans. Veh. Technol., 2008, 57, (4), pp. 20812088.
    34. 34)
      • 34. Allègre, A.-L., Bouscayrol, A., Trigui, R.: ‘Flexible real-time control of a hybrid energy storage system for electric vehicles’, IET Electr. Syst. Transp., 2013, 3, (3), pp. 7985.
    35. 35)
      • 35. Letrouvé, T., Lhomme, W., Bouscayrol, A., et al: ‘Control validation of Peugeot 3∞8 Hybrid4 vehicle using a reduced-scale power HIL simulation’, J. Electr. Eng. Technol., 2013, 8, (5), pp. 12271233.
    36. 36)
      • 36. Deprez, W., Lemmens, J., Vanhooydonck, D., et al: ‘Iso-efficiency contours as a concept to characterize variable speed drive efficiency’. 2010 Int. Conf. on Electrical Machines (ICEM), 2010.
    37. 37)
      • 37. Bastiaensen, C., Deprez, W., Symens, W., et al: ‘Parameter sensitivity and measurement uncertainty propagation in torque-estimation algorithms for induction machines’, IEEE Trans. Instrum. Meas., 2008, 57, (12), pp. 27272732.
    38. 38)
      • 38. Bouscayrol, A.: ‘Hardware-in-the-loop simulations’, in Wilamowski, B.M., Irwin, J.D. (Eds.): ‘The industrial electronics handbook’ (CRC Press, 2011, 2nd edn.).
    39. 39)
      • 39. Sul, S.K.: ‘Control of electric machine drive systems’ (Wiley-IEEE Press, 2011).
    40. 40)
      • 40. Allègre, A.L., Bouscayrol, A., Verhille, J.N., et al: ‘Reduced-scale-power hardware-in-the-loop simulation of an innovative subway’, IEEE Trans. Ind. Electron., 2010, 57, (4), pp. 11751185.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2016.0060
Loading

Related content

content/journals/10.1049/iet-est.2016.0060
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address