http://iet.metastore.ingenta.com
1887

Survey on high-frequency models of PWM electric drives for shaft voltage and bearing current analysis

Survey on high-frequency models of PWM electric drives for shaft voltage and bearing current analysis

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electrical Systems in Transportation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a review on high-frequency modelling in electric machines is conducted. Pulse-width modulation (PWM) creates common-mode-voltage (CMV) and common-mode-current (CMC) in electric drives with high-frequency impacts such as shaft voltage and bearing current which in turn cause bearing failures. To predict and reduce these failures in an electric machine, transitional modelling of high-frequency pulses is necessary. At the first step, several methods for high-frequency modelling in an electric drive are categorised. At the second step, several types of bearing currents discussed and CMV and CMC in electric drives are introduced. At the third step, CMV, CMC and bearing currents are simulated for six types of PWM methods and experimental verification is reported. Finally, root-mean-square value of a distorted parasitic current is introduced for comparing the electromagnetic effects of PWM methods.

References

    1. 1)
      • 1. Mukherjee, R., Patra, A., Banerjee, S.: ‘Impact of a frequency modulated pulsewidth modulation (PWM) switching converter on the input power system quality’, IEEE Trans. Power Electron., 2010, 25, (6), pp. 14501459.
    2. 2)
      • 2. Ahola, J., Sarkimaki, V., Muetze, A., et al: ‘Radio-frequency-based detection of electrical discharge machining bearing currents’, IET Electr. Power Appl., 2011, 5, (4), pp. 386392.
    3. 3)
      • 3. Lvovich, V.F., Smiechowski, M.F.: ‘Impedance characterization of industrial lubricants’, Electrochim. Acta, 2006, 51, (8), pp. 14871496.
    4. 4)
      • 4. Abbasi, A., Nazarzadeh, J.: ‘A traveling-wave model of electric machines with eccentricity for shaft voltage analysis’, J. Electromagn. Waves Appl., 2014, 28, (18), pp. 22902307.
    5. 5)
      • 5. DeVivo, B., Lamberti, P., Tucci, V., et al: ‘Simulation of the bearing voltage in an inverter-FED induction motor by a full three phase multi conductor transmission line model’, Prog. Electromagn. Res. B, 2013, 46, pp. 233250.
    6. 6)
      • 6. Magdun, O., Binder, A.: ‘High-frequency induction machine modelling for common mode current and bearing voltage calculation’, IEEE Trans. Ind. Appl., 2014, 50, (3), pp. 17801790.
    7. 7)
      • 7. Kelin, J., Georg, B., Enohnyaket, M., et al: ‘Modelling an AC motor with high accuracy in a wide frequency range’, IET Electr. Power Appl., 2013, 7, pp. 116122.
    8. 8)
      • 8. Martinez-Tarifa, J.M., Amaras-Duarte, H., Sanz-Feito, J.: ‘Frequency-domain model for calculation of voltage distribution through random wound coils and its interaction with stray capacitances’, IEEE Trans. Energy Convers., 2008, 23, (3), pp. 742751.
    9. 9)
      • 9. DeGersem, H., Muetze, A.: ‘Finite-element supported transmission-line models for calculating high-frequency effects in machine windings’, IEEE Trans. Magn., 2012, 48, (2), pp. 787790.
    10. 10)
      • 10. Karsai, K., Kerenyi, D., Kiss, L.: ‘Large power transformers’ (Elsevier Science Pub. Co. Inc., 1987, 1st edn.).
    11. 11)
      • 11. Wright, M.T., Yang, S.J., McLeay, K.: ‘General theory of fast-fronted interturn voltage distribution in electrical machine windings’, IEE Proc. B, Electr. Power Appl., 1983, 130, (4), pp. 245256.
    12. 12)
      • 12. McLaren, P.G., Abdel-Rahman, M.H.: ‘Modeling of large AC motor coils for steep-fronted surge studies’, IEEE Trans. Ind. Appl., 1988, 24, (3), pp. 422426.
    13. 13)
      • 13. Oyegoke, B.S.: ‘Voltage distribution in the stator winding of an induction motor following a voltage surge’, Electr. Eng., 2000, 82, (3-4), pp. 199205.
    14. 14)
      • 14. Bidan, P., Lebey, T., Montseny, G., et al: ‘Transient voltage distribution in inverter fed motor windings: experimental study and modelling’, IEEE Trans. Power Electron., 2001, 16, (1), pp. 92100.
    15. 15)
      • 15. Zhang, J., Weijie, X., Chuang, G., et al: ‘Analysis of inter-turn insulation of high voltage electrical machine by using multi-conductor transmission line model’, IEEE Trans. Magn., 2013, 49, (5), pp. 19051908.
    16. 16)
      • 16. Link, P.J.: ‘Minimizing electric bearing currents in ASD systems’, IEEE Ind. Appl. Mag., 1999, 5, (4), pp. 5566.
    17. 17)
      • 17. Muetze, A.: ‘Thousands of hits: on inverter-induced bearing currents, related work, and the literature’, Elektrotech. Inf.tech., 2011, 128, (11-12), pp. 382388.
    18. 18)
      • 18. Alger, P., Samson, H.: ‘Shaft currents in electric machines’, Trans. Am. Inst. Electr. Eng., 1924, 43, pp. 235245.
    19. 19)
      • 19. Torlay, J., Foggia, A., Corenwinder, C., et al: ‘Analysis of shaft voltages and circulating currents in the parallel-connected windings in large synchronous generators’, Electr. Power Compon. Syst., 2002, 30, (2), pp. 135149.
    20. 20)
      • 20. Schiferl, R.F., Melfi, M.J., Wang, J.S.: ‘Inverter driven induction motor bearing current solutions’. Industry Applications Society 49th Annual Petroleum and Chemical Industry Conf., 2002, pp. 6775.
    21. 21)
      • 21. Ammann, C., Reichert, K., Joho, R., et al: ‘Shaft voltages in generators with static excitation systems-problems and solution’, IEEE Trans. Energy Convers., 1988, 3, (2), pp. 409419.
    22. 22)
      • 22. Nippes, P.I.: ‘Early warning of developing problems in rotating Machinery as provided by monitoring shaft voltages and grounding currents’, IEEE Trans. Energy Convers., 2004, 19, (2), pp. 340345.
    23. 23)
      • 23. Chen, S., Lipo, T.A., Fitzgerald, D.: ‘Modeling of motor bearing currents in PWM inverter drives’, IEEE Trans. Ind. Appl., 1996, 32, (6), pp. 13651370.
    24. 24)
      • 24. Bell, S., Cookson, T.J., Cope, S.A., et al: ‘Experience with variable-frequency drives and motor bearing reliability’, IEEE Trans. Ind. Appl., 2001, 37, (5), pp. 14381446.
    25. 25)
      • 25. Dahl, D., Sosnowski, D., Schlegel, D., et al: ‘Gear up your bearings’, IEEE Ind. Appl. Mag., 2008, 14, (4), pp. 4553.
    26. 26)
      • 26. Tavner, P.J.: ‘Review of condition monitoring of rotating electrical machines’, IET Electr. Power Appl., 2008, 2, (4), pp. 215247.
    27. 27)
      • 27. Ferreira, F., Pereirinha, P., de Almeida, A.: ‘Study on the bearing currents activity in cage induction motors using finite-element method’. Proc. 17th Int. Conf. Electric Machine, September 2006.
    28. 28)
      • 28. Ferreira, F., Baoming, G., de Almeida, A.: ‘Reliability and operation of high-efficiency induction motors’. IEEE/IAS 51st Industrial Commercial Power Systems Technical Conf., May 2015, pp. 113.
    29. 29)
      • 29. Ferreira, F., Cistelecan, M.V., de Almeida, A.: ‘Evaluation of slot-embedded partial electrostatic shield for high-frequency bearing current mitigation in inverter-fed induction motors’, IEEE Trans. Energy Convers., 2012, 27, (2), pp. 382390.
    30. 30)
      • 30. Chen, S., Lipo, T.A.: ‘Bearing currents and shaft voltages of an induction motor under hard-and soft-switching inverter excitation’, IEEE Trans. Ind. Appl., 1998, 34, (5), pp. 10421048.
    31. 31)
      • 31. Wang, F.: ‘Motor shaft voltages and bearing currents and their reduction in multilevel medium-voltage PWM voltage-source-inverter drive applications’, IEEE Trans. Ind. Appl., 2000, 36, (5), pp. 13361341.
    32. 32)
      • 32. Busse, D., Erdman, J., Kerkman, R., et al: ‘System electrical parameters and their effects on bearing currents’, IEEE Trans. Ind. Appl., 1997, 33, (2), pp. 577584.
    33. 33)
      • 33. Maki-Ontto, P.: ‘Modeling and reduction of shaft voltages in AC motors fed by frequency converters’. PhD thesis, Helsinki University of Technology, 2006.
    34. 34)
      • 34. Binder, A., Muetze, A.: ‘Scaling effects of inverter-induced bearing currents in AC machines’, IEEE Trans. Ind. Appl., 2008, 44, (3), pp. 769776.
    35. 35)
      • 35. Muetze, A., Binder, A.: ‘Calculation of motor capacitances for prediction of the voltage across the bearings in machines of inverter-based drive systems’, IEEE Trans. Ind. Appl., 2007, 43, (3), pp. 665672.
    36. 36)
      • 36. Ollila, J., Hammar, T., Iisakkala, J., et al: ‘A new reason for bearing current damages in variable speed AC drives’. European Conf. on Power Electronics and Applications, 1997, vol. 2, pp. 2539.
    37. 37)
      • 37. Maki-Ontto, P., Luomi, J.: ‘Induction motor model for the analysis of capacitive and induced shaft voltages’. IEEE Int. Conf. Electric Machines and Drives, May 2005, pp. 16531660.
    38. 38)
      • 38. Muetze, A., Binder, A.: ‘Calculation of circulating bearing currents in machines of inverter-based drive systems’, IEEE Trans. Ind. Electron., 2007, 54, (2), pp. 932938.
    39. 39)
      • 39. Muetze, A., Binder, A.: ‘Don't lose your bearings’, IEEE Ind. Appl. Mag., 2006, 12, (4), pp. 2231.
    40. 40)
      • 40. Akagi, H., Tamura, S.: ‘A passive EMI filter for eliminating both bearing current and ground leakage current from an inverter-driven motor’, IEEE Trans. Power Electron., 2006, 21, (5), pp. 14591469.
    41. 41)
      • 41. Somani, A., Gupta, R.K., Mohapatra, K.K., et al: ‘On the causes of circulating currents in PWM drives with open-end winding AC machines’, IEEE Trans. Ind. Electron., 2013, 60, (9), pp. 36703678.
    42. 42)
      • 42. Shang, J., Yun, W.: ‘A space-vector modulation method for common-mode voltage reduction in current-source converters’, IEEE Trans. Power Electron., 2014, 29, (1), pp. 374385.
    43. 43)
      • 43. Hava, A., Un, E.: ‘Performance analysis of reduced common-mode voltage PWM methods and comparison with standard PWM methods for three-phase voltage-source inverters’, IEEE Trans. Power Electron., 2009, 24, (1), pp. 241252.
    44. 44)
      • 44. Zhang, H., VonJouanne, A., Dai, S., et al: ‘Multilevel inverter modulation schemes to eliminate common-mode voltages’, IEEE Trans. Ind. Appl., 2000, 36, (6), pp. 16451653.
    45. 45)
      • 45. Lai, Y., Chen, P., Lee, H., et al: ‘Optimal common-mode voltage reduction PWM technique for inverter control with consideration of the dead-time effects – part II: applications to IM drives with diode front end’, IEEE Trans. Ind. Appl., 2004, 40, (6), pp. 16131620.
    46. 46)
      • 46. Ferreira, F., de Almeida, A., Baoming, G.: ‘Comparative study on 2-level and 3-level voltage source inverters’. Fifth Int. Conf. Energy Efficiency in Motor Driven Systems, June 2007, pp. 581602.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2016.0051
Loading

Related content

content/journals/10.1049/iet-est.2016.0051
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address