access icon free Aircraft batteries: current trend towards more electric aircraft

Competition in the aircraft industry market and global warming has driven the industry to think along economic and environmental lines. This has resulted in the emergence of more electric aircraft (MEA). The increase in the power demand of aircraft, especially in the last two decades, coupled with advancement in battery materials and technology has led to the development of many high energy density batteries. This study presents an overview of the battery systems for MEA. In this paper, a study on the battery technologies used in aircraft in the last five decades is being done. A general background of the battery system is presented and the performance of the batteries based on energy densities and low temperature capabilities are evaluated and discussed. Evolution of MEA with its power system architecture and load profile is presented to understand the requirements of the battery system. Weight saving and cost analysis is done for the Li-ion and Ni–Cd batteries with respect to the requirement of an MEA ‘Aircraft X’. Battery management system (BMS) for Li-ion batteries is also explored and discussed. Based on the analysis, Li-ion battery is selected and integrated with the power distribution DC network for future MEA.

Inspec keywords: battery powered vehicles; secondary cells; aircraft power systems; global warming; battery management systems; lithium compounds

Other keywords: global warming; cost analysis; MEA aircraft X; power distribution DC network; BMS; aircraft battery; load profile; temperature capability; more electric aircraft; power system architecture; high energy density batteries; battery material; Li-ion battery; aircraft industry market; Ni-Cd battery; battery management system; weight saving

Subjects: Aerospace power systems; Secondary cells

References

    1. 1)
      • 44. SAFT Batteries Manual: ‘Nickel cadmium batteries for aircraft applications, SAFT’, available at: http://aircraft.saftbatteries.com/SAFT/UploadedFiles/Aircraft/PDF/Eligibility.pdf.
    2. 2)
      • 59. Abdel-Hafez, A.: ‘Power generation and distribution system for a more electric aircraft – a review’, in Agarwal, R. (Ed.): ‘Recent advances in aircraft technology’ (INTECH Open Access Publisher, 2012), pp. 289309.
    3. 3)
      • 55. Sinnett, M.: ‘787 Program Electrical System and Batteries’, Boeing, Available at: http://www.boeing.com/787-media-resource/docs/Sinnett-TOS-Deck.pdf.
    4. 4)
      • 24. Fischer, M., Weber, M., Schwartz, P.V.: ‘Batteries: higher energy density than gasoline?’, Energy Policy, 2009, 37, (9), pp. 26392641.
    5. 5)
      • 43. Anderman, M.: ‘Ni-Cd battery for aircraft; battery design and charging options’. Proc. 9th Annual Battery Conf. on Applications and Advances, 1994, pp. 1219.
    6. 6)
      • 62. Motapon, S.N., Dessaint, L.A., Al-Haddad, K.: ‘A robust H2 -consumption-minimization-based energy management strategy for a fuel cell hybrid emergency power system of more electric aircraft’, IEEE Trans. Ind. Electron., 2014, 61, (11), pp. 61486156.
    7. 7)
      • 26. Yuasa NPX-80BFR 12V Sealed Manual, available at: http://www.yuasabatteries.com/pdfs/NPX_80B_DataSheet.pdf.
    8. 8)
      • 45. SAFT Battery 405CH Manual: ‘405CH ULM® Ultra Low Maintenance, SAFT’, available at: http://www.saftbatteries.com/battery-search/405ch.
    9. 9)
      • 78. Vutetakis, D.: ‘Applications – Transportation | Aviation: Battery, In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering’ (Elsevier, 2013), ISBN 9780124095472.
    10. 10)
      • 3. Hoffman, A.C., Hansen, I.G., Beach, R.F., et al: ‘Advanced secondary power system for transport aircraft’. NTP-2463, NASA, USA, May 1985. Available at: http://www.ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19850020632.pdf.
    11. 11)
      • 80. Lee, W.C., Drury, D., Mellor, P.: ‘An integrated design of active balancing and redundancy at module level for electric vehicle batteries’. 2012 IEEE Transportation Electrification Conf. and Expo (ITEC), 2012, pp. 16.
    12. 12)
      • 52. Cutts, S.J.: ‘A collaborative approach to the more electric aircraft’. Int. Conf. on Power Electronics, Machines and Drives, 2002, pp. 223228.
    13. 13)
      • 17. Quigley, R.E.J.: ‘More electric aircraft’. Applied Power Electronics Conf. and Exposition, 1993, pp. 906911.
    14. 14)
      • 48. CONCORDE Battery RG2420 Manual: ‘Concorde RG2420 Aircraft Battery Concorde Battery’, available at: http://www.concordebattery.com/flyer.php?id=43.
    15. 15)
      • 30. Bernard, P., Lippert, M.: ‘Nickel–cadmium and nickel–metal hydride battery energy storage’, in Moseley, P.T., Garche, J. (Eds.): ‘Electrochemical energy storage for renewable sources and grid balancing’ (Elsevier, Amsterdam, 2015), pp. 223251.
    16. 16)
      • 40. Vutetakis, D.G., Viswanathan, V.V.: ‘Qualification of a 24-volt, 35-Ah sealed lead-acid aircraft battery’. Proc. 11th Annual Battery Conf. on Applications and Advances, 1996, pp. 3338.
    17. 17)
      • 56. Parker, R.: ‘Meeting the environmental challenge of noise and engine emissions’, Aero-Eng. Future, 2006, 28, pp. 1721.
    18. 18)
      • 37. Vutetakis, D.G.: ‘Batteries’, in Spitzer, C.R., Ferrell, U., Ferrell, T. (Eds.): ‘Digital avionics handbook’ (CRC Press, 2014, 3rd edn.), pp. 419442.
    19. 19)
      • 15. Cronin, M.J.: ‘Advanced power generation systems for more electric aircraft’. SAE Technical Paper 912186, 1991.
    20. 20)
      • 71. Naayagi, R.T., Forsyth, A.J., Shuttleworth, R.: ‘High-power bidirectional DC–DC converter for aerospace applications’, IEEE Trans. Power Electron., 2012, 27, pp. 43664379.
    21. 21)
      • 6. Lee, D.S., Pitari, G., Grewe, V., et al: ‘Transport impacts on atmosphere and climate: Aviation’, Atmos. Environ., 2010, 44, (37), pp. 46784734.
    22. 22)
      • 77. Kolly, J.M., Panagiotou, J., Czech, B.A.: ‘The Investigation of a Lithium-Ion Battery Fire Onboard a Boeing 787 by the US National Transportation Safety Board’. Technical Report. Available at: http://www.isasi.org/Documents/library/technical-papers/2013/ISASI%20NTSB%20Kolly.pdf.
    23. 23)
      • 20. Roboam, X., Langlois, O., Piquet, H., et al: ‘Hybrid power generation system for aircraft electrical emergency network’, IET Electr. Syst. Transp., 2011, 1, (4), pp. 148155.
    24. 24)
      • 42. Vutetakis, D.G.: ‘Current status of aircraft batteries in the U.S. Air Force’. Proc. 9th Annual Battery Conf. on Applications and Advances, 1994, pp. 16.
    25. 25)
      • 22. Fathabadi, H.: ‘Lithium-ion battery equipped with AC feature for using in electric/hybrid vehicles’, IET Electr. Syst. Transp., 2015, 5, (3), pp. 95102.
    26. 26)
      • 7. Kaufmann, M., Zenkert, D., Mattei, C.: ‘Cost optimization of composite aircraft structures including variable laminate qualities’, Composites Sci. Technol., 2008, 68, (13), pp. 27482754.
    27. 27)
      • 19. Todd, R., Forsyth, A.J.: ‘DC-bus power quality for aircraft power systems during generator fault conditions’, IET Electr. Syst. Transp., 2011, 1, (3), pp. 126135.
    28. 28)
      • 53. Boeing 737-200 Aircraft Notes. Available at: http://www.b737.org.uk/hawk737200notespart4.htm.
    29. 29)
      • 11. Gohardani, A.S.: ‘A synergistic glance at the prospects of distributed propulsion technology and the electric aircraft concept for future unmanned air vehicles and commercial/military aviation’, Prog. Aerosp. Sci., 2013, 57, pp. 2570.
    30. 30)
      • 79. Sato, N.: ‘Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicle’, J. Power Sources, 2001, 99, (1-2), pp. 7077.
    31. 31)
      • 47. SAFT Battery 539 CH1 Manual: ‘539CH1 ULM® Ultra Low Maintenance, SAFT’, available at: www.saftbatteries.com/battery-search/539ch1.
    32. 32)
      • 18. Faleiro, L.: ‘Beyond the more electric aircraft’, Aerosp. Am., 2005, 43, (9), pp. 3540.
    33. 33)
      • 10. Christou, I., Nelms, A., Cotton, I., et al: ‘Choice of optimal voltage for more electric aircraft wiring systems’, IET Electr. Syst. Transp., 2011, 1, (1), pp. 2430.
    34. 34)
      • 57. Provost, M.J.: ‘The More Electric Aero-engine: a general overview from an engine manufacturer’. Int. Conf. on Power Electronics, Machines and Drives, 2002, pp. 246251.
    35. 35)
      • 38. Earwicker, G.A.: ‘Aircraft batteries and their behavior on constant-potential charge’, Proc. IEE - A: Power Eng., 1956, 103, (1), pp. 180191.
    36. 36)
      • 36. Scardaville, P.A., Newman, B.C.: ‘High power vented nickel-cadmium cells designed for ultra-low maintenance’, Aerosp. Electron. Syst. Mag. IEEE, 1993, 8, (5), pp. 1624.
    37. 37)
      • 68. Huafeng, X., Shaojun, X.: ‘A ZVS bidirectional DC-DC converter with phase-shift plus PWM control scheme’, IEEE Trans. Power Electron., 2008, 23, pp. 813823.
    38. 38)
      • 8. Kaufmann, M., Zenkert, D., Wennhage, P.: ‘Integrated cost/weight optimization of aircraft structures’, Struct. Multidiscip. Optim., 2010, 41, (2), pp. 325334.
    39. 39)
      • 33. Thomas, C.E.: ‘Fuel cell and battery electric vehicles compared’, Int. J. Hydrog. Energy, 2009, 34, (15), pp. 60056020.
    40. 40)
      • 4. Quentin, F., Szodruch, J.: ‘Aeronautics and air transport: beyond vision 2020 towards 2050 ACARE’, Europe, June 2010. Available at: http://www.ec.europa.eu/research/growth/aeronautics2020/pdf/aeronautics2020_en.pdf.
    41. 41)
      • 65. Saft 410946 Model 2758 Datasheet: ‘Nickel-Cadmium Single Aisle Aircraft Battery’, Available at: http://www.saftbatteries.com/battery-search/2758.
    42. 42)
      • 9. Corcau, J., Grigorie, T.L., Dinca, L.: ‘Simulation and analysis of a fuel cell/battery hybrid power supply for More-Electric Aircraft’. IECON 2012 – 38th Annual Conf. on IEEE Industrial Electronics Society, 2012, pp. 54775481.
    43. 43)
      • 75. Boeing Says Dreamliner Battery Redesign Eliminates Chance of Fire. Wired, Available at: http://www.wired.com/2013/03/boeing-787-battery-redesign/ (accessed on 21 October 2015).
    44. 44)
      • 32. Tarascon, J.M., Armand, M.: ‘Issues and challenges facing rechargeable lithium batteries’, Nature, 2001, 414, (6861), pp. 359367.
    45. 45)
      • 46. SAFT Battery 2758 Manual: ‘2758 Nickel-Cadmium Aircraft Battery, SAFT’, available at: www.saftbatteries.com/force_download/22117.pdf.
    46. 46)
      • 49. GS Yuasa LVP Series Manual: ‘Lithium ion cell for aerospace applications LVP Series, GSYuasa’, Available at: http://www.s399157097.onlinehome.us/SpecSheets/LVP10-65.pdf.
    47. 47)
      • 34. Senyshyn, A., Muhlbauer, M.J., Dolotko, O., et al: ‘Low-temperature performance of Li-ion batteries: the behavior of lithiated graphite’, Journal of Power Sources, 2015, 282, pp. 235240.
    48. 48)
      • 39. McWhorter, A.T., Bishop, W.S.: ‘Sealed aircraft battery with integral power conditioner’. Proc. 25th Power Sources Symp., 1972, pp. 8991.
    49. 49)
      • 13. Quigley, R.E.J.: ‘More electric aircraft’. Proc. of 8th the Applied Power Electronics Conf. and Exposition, APEC ‘93’, 1993, pp. 906911.
    50. 50)
      • 23. Scrosati, B., Garche, J.: ‘Lithium batteries: status, prospects and future’, J. Power Sources, 2010, 195, pp. 24192430.
    51. 51)
      • 16. Zhou, Q., Sumner, M., Thomas, D.: ‘Fault location for aircraft distribution systems using harmonic impedance estimation’, IET Electr. Syst. Transp., 2012, 2, (3), pp. 119129.
    52. 52)
      • 5. Roboam, X., Sareni, B., Andrade, A.D.: ‘More electricity in the air: toward optimized electrical networks embedded in more-electrical aircraft’, IEEE Ind. Electron. Mag., 2012, 6, (4), pp. 617.
    53. 53)
      • 63. Rothman, A.: ‘Airbus to bring back lithium-ion batteries on A350 after removal’, Bloomberg news, 30 September 2014, http://www.bloomberg.com/news/articles/2014-09-30/airbus-to-bring-back-lithium-ion-batteries-on-a350-after-removal.
    54. 54)
      • 67. De Doncker, R.W.A.A., Divan, D.M., Kheraluwala, M.H.: ‘A three-phase soft-switched high-power-density DC/DC converter for high-power applications’, IEEE Trans. Ind. Appl., 1991, 27, pp. 6373.
    55. 55)
      • 69. Bai, H., Zhang, Y., Semanson, C., et al: ‘Modelling, design and optimisation of a battery charger for plug-in hybrid electric vehicles’, IET Electr. Syst. Transp., 2011, 1, (1), pp. 310.
    56. 56)
      • 14. Yang, T., Bozhko, S., Asher, G.: ‘Active front-end rectifier modelling using dynamic phasors for more-electric aircraft applications’, IET Electr. Syst. Transp., 2015, 5, (2), pp. 7787.
    57. 57)
      • 58. Brombach, J., Lucken, A., Nya, B., et al: ‘Comparison of different electrical HVDC-architectures for aircraft application’. Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS), October 2012, pp. 16.
    58. 58)
      • 1. Arguelles, P., Bischoff, M., Busquin, P., et al: ‘European aeronautics: a vision for 2020’. ACARE, Europe, January 2001. Available at: http://www.ec.europa.eu/research/growth/aeronautics2020/pdf/aeronautics2020_en.pdf.
    59. 59)
      • 50. ACME FNC manual: ‘Acme's sealed fiber nickel-cadmium battery systems’, Available at: http://www.acme-aero.com/PDF/Acme_Capability_Brochure.pdf.
    60. 60)
      • 70. Xuewei, P., Rathore, A.K.: ‘Naturally clamped soft-switching current-fed three-phase bidirectional DC/DC converter’, IEEE Trans. Ind. Electron., 2015, 62, pp. 33163324.
    61. 61)
      • 72. Powerex IPM, PM600CLA060 Datasheet: ‘Three Phase IGBT Inverter 600 Amperes/600 Volts’, Available at: http://www.pwrx.com/Product/PM600CLA060.
    62. 62)
      • 29. Rand, D.A.J., Moseley, P.T.: ‘Energy storage with lead–acid batteries’, in Moseley, P.T., Garche, J. (Eds.): ‘Electrochemical energy storage for renewable sources and grid balancing’ (Elsevier, Amsterdam, 2015), pp. 201222.
    63. 63)
      • 2. Naayagi, R.T.: ‘A review of more electric aircraft technology’. Proc. ICEETS Conf., 2013, pp. 750753.
    64. 64)
      • 60. Military Standard, Aircraft Electric Power Characteristics MIL-STD-704F, 2008, Available at: https://www.wbdg.org/ccb/FEDMIL/std704f.pdf.
    65. 65)
      • 73. Powerex IPM, PM450CLA060 Datasheet: ‘Three Phase IGBT Inverter 450 Amperes/600 Volts’, Available at: http://www.pwrx.com/Product/PM450CLA060.
    66. 66)
      • 64. EaglePicher Technologies, LLC, MAR-9526 High Power Battery Datasheet: ‘Lithium-Ion – Iron Phosphate (LFP) Chemistry Rechargeable’, Available at: http://www.eaglepicher.com/images/Li-Ion/EP%20MAR%209526%20LITHIUM%20ION%20DATA%20SHEET.PDF.
    67. 67)
      • 76. Celono, T.F.: ‘Lithium Battery Safe Containment’, Battery University, Available at: http://batteryuniversity.com/learn/article/lithium_battery_safe_containment (accessed on 21 Oct 2015).
    68. 68)
      • 21. Cheng, M.W., Lee, Y.S., Liu, M., et al: ‘State-of-charge estimation with aging effect and correction for lithium-ion battery’, IET Electr. Syst. Transp., 2015, 5, (2), pp. 7076.
    69. 69)
      • 25. SHORAI LFX21A6-BS12 Manual, available at: http://shoraipower.com/.
    70. 70)
      • 28. Enos, D.G.: ‘Lead-acid batteries for medium- and large-scale energy storage’, in Menictas, C., Skyllas-Kazacos, M., Mariana, L.T. (Eds.): ‘Advances in batteries for medium and large-scale energy storage’, Woodhead Publishing Series in Energy (Woodhead Publishing, 2015), pp. 5771.
    71. 71)
      • 54. Dodt, T.: ‘Introducing the 787, Boeing’, ISASI, Available at: http://www.isasi.org/Documents/library/technical-papers/2011/Introducing-787.pdf.
    72. 72)
      • 66. Wang, Y.X., Qin, F.F., Kim, F.F.: ‘Bidirectional DC-DC converter design and implementation for lithium-ion battery application’. Power and Energy Engineering Conf. (APPEEC), 2014 IEEE PES Asia-Pacific, 2014, pp. 15.
    73. 73)
      • 31. Chen, S.X., Gooi, H.B., Xia, N., et al: ‘Modelling of lithium-ion battery for online energy management systems’, IET Electr. Syst. Transp., 2012, 2, (4), pp. 202210.
    74. 74)
      • 41. Senderak, K.L., Goodman, A.W.: ‘Sealed lead-acid batteries for aircraft applications’. Proc. 16th IECEC, 1981, pp. 117122.
    75. 75)
      • 61. Deng, Y., Foo, S.Y., Bhattacharya, I.: ‘Regenerative electric power for More Electric Aircraft’. South East Con, IEEE, 2014, pp. 15.
    76. 76)
      • 12. Cronin, M.J.: ‘The all-electric aircraft’, IEE Rev., 1990, 36, (8), pp. 309311.
    77. 77)
      • 74. Powerex IPM, PM300CL1A060 Datasheet: ‘Three Phase IGBT Inverter 300 Amperes/600 Volts’, Available at: http://www.pwrx.com/Product/PM300CL1A060.
    78. 78)
      • 51. Zhao, X., Guerrero, J.M., Xiaohua, W.: ‘Review of aircraft electric power systems and architectures’. IEEE Int. Energy Conf. (ENERGYCON), 2014, 2014, pp. 949953.
    79. 79)
      • 35. Zhang, S.S., Xu, K., Jow, T.R.: ‘The low temperature performance of Li-ion batteries’, J. Power Sources, 2003, 115, (1), pp. 137140.
    80. 80)
      • 27. Characteristics of Rechargeable Batteries, Literature Number: SNVA533, Texas Instrument. Available at: http://www.ti.com/lit/an/snva533/snva533.pdf.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2016.0019
Loading

Related content

content/journals/10.1049/iet-est.2016.0019
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading