http://iet.metastore.ingenta.com
1887

Aircraft batteries: current trend towards more electric aircraft

Aircraft batteries: current trend towards more electric aircraft

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electrical Systems in Transportation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Competition in the aircraft industry market and global warming has driven the industry to think along economic and environmental lines. This has resulted in the emergence of more electric aircraft (MEA). The increase in the power demand of aircraft, especially in the last two decades, coupled with advancement in battery materials and technology has led to the development of many high energy density batteries. This study presents an overview of the battery systems for MEA. In this paper, a study on the battery technologies used in aircraft in the last five decades is being done. A general background of the battery system is presented and the performance of the batteries based on energy densities and low temperature capabilities are evaluated and discussed. Evolution of MEA with its power system architecture and load profile is presented to understand the requirements of the battery system. Weight saving and cost analysis is done for the Li-ion and Ni–Cd batteries with respect to the requirement of an MEA ‘Aircraft X’. Battery management system (BMS) for Li-ion batteries is also explored and discussed. Based on the analysis, Li-ion battery is selected and integrated with the power distribution DC network for future MEA.

References

    1. 1)
      • 1. Arguelles, P., Bischoff, M., Busquin, P., et al: ‘European aeronautics: a vision for 2020’. ACARE, Europe, January 2001. Available at: http://www.ec.europa.eu/research/growth/aeronautics2020/pdf/aeronautics2020_en.pdf.
    2. 2)
      • 2. Naayagi, R.T.: ‘A review of more electric aircraft technology’. Proc. ICEETS Conf., 2013, pp. 750753.
    3. 3)
      • 3. Hoffman, A.C., Hansen, I.G., Beach, R.F., et al: ‘Advanced secondary power system for transport aircraft’. NTP-2463, NASA, USA, May 1985. Available at: http://www.ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19850020632.pdf.
    4. 4)
      • 4. Quentin, F., Szodruch, J.: ‘Aeronautics and air transport: beyond vision 2020 towards 2050 ACARE’, Europe, June 2010. Available at: http://www.ec.europa.eu/research/growth/aeronautics2020/pdf/aeronautics2020_en.pdf.
    5. 5)
      • 5. Roboam, X., Sareni, B., Andrade, A.D.: ‘More electricity in the air: toward optimized electrical networks embedded in more-electrical aircraft’, IEEE Ind. Electron. Mag., 2012, 6, (4), pp. 617.
    6. 6)
      • 6. Lee, D.S., Pitari, G., Grewe, V., et al: ‘Transport impacts on atmosphere and climate: Aviation’, Atmos. Environ., 2010, 44, (37), pp. 46784734.
    7. 7)
      • 7. Kaufmann, M., Zenkert, D., Mattei, C.: ‘Cost optimization of composite aircraft structures including variable laminate qualities’, Composites Sci. Technol., 2008, 68, (13), pp. 27482754.
    8. 8)
      • 8. Kaufmann, M., Zenkert, D., Wennhage, P.: ‘Integrated cost/weight optimization of aircraft structures’, Struct. Multidiscip. Optim., 2010, 41, (2), pp. 325334.
    9. 9)
      • 9. Corcau, J., Grigorie, T.L., Dinca, L.: ‘Simulation and analysis of a fuel cell/battery hybrid power supply for More-Electric Aircraft’. IECON 2012 – 38th Annual Conf. on IEEE Industrial Electronics Society, 2012, pp. 54775481.
    10. 10)
      • 10. Christou, I., Nelms, A., Cotton, I., et al: ‘Choice of optimal voltage for more electric aircraft wiring systems’, IET Electr. Syst. Transp., 2011, 1, (1), pp. 2430.
    11. 11)
      • 11. Gohardani, A.S.: ‘A synergistic glance at the prospects of distributed propulsion technology and the electric aircraft concept for future unmanned air vehicles and commercial/military aviation’, Prog. Aerosp. Sci., 2013, 57, pp. 2570.
    12. 12)
      • 12. Cronin, M.J.: ‘The all-electric aircraft’, IEE Rev., 1990, 36, (8), pp. 309311.
    13. 13)
      • 13. Quigley, R.E.J.: ‘More electric aircraft’. Proc. of 8th the Applied Power Electronics Conf. and Exposition, APEC ‘93’, 1993, pp. 906911.
    14. 14)
      • 14. Yang, T., Bozhko, S., Asher, G.: ‘Active front-end rectifier modelling using dynamic phasors for more-electric aircraft applications’, IET Electr. Syst. Transp., 2015, 5, (2), pp. 7787.
    15. 15)
      • 15. Cronin, M.J.: ‘Advanced power generation systems for more electric aircraft’. SAE Technical Paper 912186, 1991.
    16. 16)
      • 16. Zhou, Q., Sumner, M., Thomas, D.: ‘Fault location for aircraft distribution systems using harmonic impedance estimation’, IET Electr. Syst. Transp., 2012, 2, (3), pp. 119129.
    17. 17)
      • 17. Quigley, R.E.J.: ‘More electric aircraft’. Applied Power Electronics Conf. and Exposition, 1993, pp. 906911.
    18. 18)
      • 18. Faleiro, L.: ‘Beyond the more electric aircraft’, Aerosp. Am., 2005, 43, (9), pp. 3540.
    19. 19)
      • 19. Todd, R., Forsyth, A.J.: ‘DC-bus power quality for aircraft power systems during generator fault conditions’, IET Electr. Syst. Transp., 2011, 1, (3), pp. 126135.
    20. 20)
      • 20. Roboam, X., Langlois, O., Piquet, H., et al: ‘Hybrid power generation system for aircraft electrical emergency network’, IET Electr. Syst. Transp., 2011, 1, (4), pp. 148155.
    21. 21)
      • 21. Cheng, M.W., Lee, Y.S., Liu, M., et al: ‘State-of-charge estimation with aging effect and correction for lithium-ion battery’, IET Electr. Syst. Transp., 2015, 5, (2), pp. 7076.
    22. 22)
      • 22. Fathabadi, H.: ‘Lithium-ion battery equipped with AC feature for using in electric/hybrid vehicles’, IET Electr. Syst. Transp., 2015, 5, (3), pp. 95102.
    23. 23)
      • 23. Scrosati, B., Garche, J.: ‘Lithium batteries: status, prospects and future’, J. Power Sources, 2010, 195, pp. 24192430.
    24. 24)
      • 24. Fischer, M., Weber, M., Schwartz, P.V.: ‘Batteries: higher energy density than gasoline?’, Energy Policy, 2009, 37, (9), pp. 26392641.
    25. 25)
      • 25. SHORAI LFX21A6-BS12 Manual, available at: http://shoraipower.com/.
    26. 26)
      • 26. Yuasa NPX-80BFR 12V Sealed Manual, available at: http://www.yuasabatteries.com/pdfs/NPX_80B_DataSheet.pdf.
    27. 27)
      • 27. Characteristics of Rechargeable Batteries, Literature Number: SNVA533, Texas Instrument. Available at: http://www.ti.com/lit/an/snva533/snva533.pdf.
    28. 28)
      • 28. Enos, D.G.: ‘Lead-acid batteries for medium- and large-scale energy storage’, in Menictas, C., Skyllas-Kazacos, M., Mariana, L.T. (Eds.): ‘Advances in batteries for medium and large-scale energy storage’, Woodhead Publishing Series in Energy (Woodhead Publishing, 2015), pp. 5771.
    29. 29)
      • 29. Rand, D.A.J., Moseley, P.T.: ‘Energy storage with lead–acid batteries’, in Moseley, P.T., Garche, J. (Eds.): ‘Electrochemical energy storage for renewable sources and grid balancing’ (Elsevier, Amsterdam, 2015), pp. 201222.
    30. 30)
      • 30. Bernard, P., Lippert, M.: ‘Nickel–cadmium and nickel–metal hydride battery energy storage’, in Moseley, P.T., Garche, J. (Eds.): ‘Electrochemical energy storage for renewable sources and grid balancing’ (Elsevier, Amsterdam, 2015), pp. 223251.
    31. 31)
      • 31. Chen, S.X., Gooi, H.B., Xia, N., et al: ‘Modelling of lithium-ion battery for online energy management systems’, IET Electr. Syst. Transp., 2012, 2, (4), pp. 202210.
    32. 32)
      • 32. Tarascon, J.M., Armand, M.: ‘Issues and challenges facing rechargeable lithium batteries’, Nature, 2001, 414, (6861), pp. 359367.
    33. 33)
      • 33. Thomas, C.E.: ‘Fuel cell and battery electric vehicles compared’, Int. J. Hydrog. Energy, 2009, 34, (15), pp. 60056020.
    34. 34)
      • 34. Senyshyn, A., Muhlbauer, M.J., Dolotko, O., et al: ‘Low-temperature performance of Li-ion batteries: the behavior of lithiated graphite’, Journal of Power Sources, 2015, 282, pp. 235240.
    35. 35)
      • 35. Zhang, S.S., Xu, K., Jow, T.R.: ‘The low temperature performance of Li-ion batteries’, J. Power Sources, 2003, 115, (1), pp. 137140.
    36. 36)
      • 36. Scardaville, P.A., Newman, B.C.: ‘High power vented nickel-cadmium cells designed for ultra-low maintenance’, Aerosp. Electron. Syst. Mag. IEEE, 1993, 8, (5), pp. 1624.
    37. 37)
      • 37. Vutetakis, D.G.: ‘Batteries’, in Spitzer, C.R., Ferrell, U., Ferrell, T. (Eds.): ‘Digital avionics handbook’ (CRC Press, 2014, 3rd edn.), pp. 419442.
    38. 38)
      • 38. Earwicker, G.A.: ‘Aircraft batteries and their behavior on constant-potential charge’, Proc. IEE - A: Power Eng., 1956, 103, (1), pp. 180191.
    39. 39)
      • 39. McWhorter, A.T., Bishop, W.S.: ‘Sealed aircraft battery with integral power conditioner’. Proc. 25th Power Sources Symp., 1972, pp. 8991.
    40. 40)
      • 40. Vutetakis, D.G., Viswanathan, V.V.: ‘Qualification of a 24-volt, 35-Ah sealed lead-acid aircraft battery’. Proc. 11th Annual Battery Conf. on Applications and Advances, 1996, pp. 3338.
    41. 41)
      • 41. Senderak, K.L., Goodman, A.W.: ‘Sealed lead-acid batteries for aircraft applications’. Proc. 16th IECEC, 1981, pp. 117122.
    42. 42)
      • 42. Vutetakis, D.G.: ‘Current status of aircraft batteries in the U.S. Air Force’. Proc. 9th Annual Battery Conf. on Applications and Advances, 1994, pp. 16.
    43. 43)
      • 43. Anderman, M.: ‘Ni-Cd battery for aircraft; battery design and charging options’. Proc. 9th Annual Battery Conf. on Applications and Advances, 1994, pp. 1219.
    44. 44)
      • 44. SAFT Batteries Manual: ‘Nickel cadmium batteries for aircraft applications, SAFT’, available at: http://aircraft.saftbatteries.com/SAFT/UploadedFiles/Aircraft/PDF/Eligibility.pdf.
    45. 45)
      • 45. SAFT Battery 405CH Manual: ‘405CH ULM® Ultra Low Maintenance, SAFT’, available at: http://www.saftbatteries.com/battery-search/405ch.
    46. 46)
      • 46. SAFT Battery 2758 Manual: ‘2758 Nickel-Cadmium Aircraft Battery, SAFT’, available at: www.saftbatteries.com/force_download/22117.pdf.
    47. 47)
      • 47. SAFT Battery 539 CH1 Manual: ‘539CH1 ULM® Ultra Low Maintenance, SAFT’, available at: www.saftbatteries.com/battery-search/539ch1.
    48. 48)
      • 48. CONCORDE Battery RG2420 Manual: ‘Concorde RG2420 Aircraft Battery Concorde Battery’, available at: http://www.concordebattery.com/flyer.php?id=43.
    49. 49)
      • 49. GS Yuasa LVP Series Manual: ‘Lithium ion cell for aerospace applications LVP Series, GSYuasa’, Available at: http://www.s399157097.onlinehome.us/SpecSheets/LVP10-65.pdf.
    50. 50)
      • 50. ACME FNC manual: ‘Acme's sealed fiber nickel-cadmium battery systems’, Available at: http://www.acme-aero.com/PDF/Acme_Capability_Brochure.pdf.
    51. 51)
      • 51. Zhao, X., Guerrero, J.M., Xiaohua, W.: ‘Review of aircraft electric power systems and architectures’. IEEE Int. Energy Conf. (ENERGYCON), 2014, 2014, pp. 949953.
    52. 52)
      • 52. Cutts, S.J.: ‘A collaborative approach to the more electric aircraft’. Int. Conf. on Power Electronics, Machines and Drives, 2002, pp. 223228.
    53. 53)
      • 53. Boeing 737-200 Aircraft Notes. Available at: http://www.b737.org.uk/hawk737200notespart4.htm.
    54. 54)
      • 54. Dodt, T.: ‘Introducing the 787, Boeing’, ISASI, Available at: http://www.isasi.org/Documents/library/technical-papers/2011/Introducing-787.pdf.
    55. 55)
      • 55. Sinnett, M.: ‘787 Program Electrical System and Batteries’, Boeing, Available at: http://www.boeing.com/787-media-resource/docs/Sinnett-TOS-Deck.pdf.
    56. 56)
      • 56. Parker, R.: ‘Meeting the environmental challenge of noise and engine emissions’, Aero-Eng. Future, 2006, 28, pp. 1721.
    57. 57)
      • 57. Provost, M.J.: ‘The More Electric Aero-engine: a general overview from an engine manufacturer’. Int. Conf. on Power Electronics, Machines and Drives, 2002, pp. 246251.
    58. 58)
      • 58. Brombach, J., Lucken, A., Nya, B., et al: ‘Comparison of different electrical HVDC-architectures for aircraft application’. Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS), October 2012, pp. 16.
    59. 59)
      • 59. Abdel-Hafez, A.: ‘Power generation and distribution system for a more electric aircraft – a review’, in Agarwal, R. (Ed.): ‘Recent advances in aircraft technology’ (INTECH Open Access Publisher, 2012), pp. 289309.
    60. 60)
      • 60. Military Standard, Aircraft Electric Power Characteristics MIL-STD-704F, 2008, Available at: https://www.wbdg.org/ccb/FEDMIL/std704f.pdf.
    61. 61)
      • 61. Deng, Y., Foo, S.Y., Bhattacharya, I.: ‘Regenerative electric power for More Electric Aircraft’. South East Con, IEEE, 2014, pp. 15.
    62. 62)
      • 62. Motapon, S.N., Dessaint, L.A., Al-Haddad, K.: ‘A robust H2 -consumption-minimization-based energy management strategy for a fuel cell hybrid emergency power system of more electric aircraft’, IEEE Trans. Ind. Electron., 2014, 61, (11), pp. 61486156.
    63. 63)
      • 63. Rothman, A.: ‘Airbus to bring back lithium-ion batteries on A350 after removal’, Bloomberg news, 30 September 2014, http://www.bloomberg.com/news/articles/2014-09-30/airbus-to-bring-back-lithium-ion-batteries-on-a350-after-removal.
    64. 64)
      • 64. EaglePicher Technologies, LLC, MAR-9526 High Power Battery Datasheet: ‘Lithium-Ion – Iron Phosphate (LFP) Chemistry Rechargeable’, Available at: http://www.eaglepicher.com/images/Li-Ion/EP%20MAR%209526%20LITHIUM%20ION%20DATA%20SHEET.PDF.
    65. 65)
      • 65. Saft 410946 Model 2758 Datasheet: ‘Nickel-Cadmium Single Aisle Aircraft Battery’, Available at: http://www.saftbatteries.com/battery-search/2758.
    66. 66)
      • 66. Wang, Y.X., Qin, F.F., Kim, F.F.: ‘Bidirectional DC-DC converter design and implementation for lithium-ion battery application’. Power and Energy Engineering Conf. (APPEEC), 2014 IEEE PES Asia-Pacific, 2014, pp. 15.
    67. 67)
      • 67. De Doncker, R.W.A.A., Divan, D.M., Kheraluwala, M.H.: ‘A three-phase soft-switched high-power-density DC/DC converter for high-power applications’, IEEE Trans. Ind. Appl., 1991, 27, pp. 6373.
    68. 68)
      • 68. Huafeng, X., Shaojun, X.: ‘A ZVS bidirectional DC-DC converter with phase-shift plus PWM control scheme’, IEEE Trans. Power Electron., 2008, 23, pp. 813823.
    69. 69)
      • 69. Bai, H., Zhang, Y., Semanson, C., et al: ‘Modelling, design and optimisation of a battery charger for plug-in hybrid electric vehicles’, IET Electr. Syst. Transp., 2011, 1, (1), pp. 310.
    70. 70)
      • 70. Xuewei, P., Rathore, A.K.: ‘Naturally clamped soft-switching current-fed three-phase bidirectional DC/DC converter’, IEEE Trans. Ind. Electron., 2015, 62, pp. 33163324.
    71. 71)
      • 71. Naayagi, R.T., Forsyth, A.J., Shuttleworth, R.: ‘High-power bidirectional DC–DC converter for aerospace applications’, IEEE Trans. Power Electron., 2012, 27, pp. 43664379.
    72. 72)
      • 72. Powerex IPM, PM600CLA060 Datasheet: ‘Three Phase IGBT Inverter 600 Amperes/600 Volts’, Available at: http://www.pwrx.com/Product/PM600CLA060.
    73. 73)
      • 73. Powerex IPM, PM450CLA060 Datasheet: ‘Three Phase IGBT Inverter 450 Amperes/600 Volts’, Available at: http://www.pwrx.com/Product/PM450CLA060.
    74. 74)
      • 74. Powerex IPM, PM300CL1A060 Datasheet: ‘Three Phase IGBT Inverter 300 Amperes/600 Volts’, Available at: http://www.pwrx.com/Product/PM300CL1A060.
    75. 75)
      • 75. Boeing Says Dreamliner Battery Redesign Eliminates Chance of Fire. Wired, Available at: http://www.wired.com/2013/03/boeing-787-battery-redesign/ (accessed on 21 October 2015).
    76. 76)
      • 76. Celono, T.F.: ‘Lithium Battery Safe Containment’, Battery University, Available at: http://batteryuniversity.com/learn/article/lithium_battery_safe_containment (accessed on 21 Oct 2015).
    77. 77)
      • 77. Kolly, J.M., Panagiotou, J., Czech, B.A.: ‘The Investigation of a Lithium-Ion Battery Fire Onboard a Boeing 787 by the US National Transportation Safety Board’. Technical Report. Available at: http://www.isasi.org/Documents/library/technical-papers/2013/ISASI%20NTSB%20Kolly.pdf.
    78. 78)
      • 78. Vutetakis, D.: ‘Applications – Transportation | Aviation: Battery, In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering’ (Elsevier, 2013), ISBN 9780124095472.
    79. 79)
      • 79. Sato, N.: ‘Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicle’, J. Power Sources, 2001, 99, (1-2), pp. 7077.
    80. 80)
      • 80. Lee, W.C., Drury, D., Mellor, P.: ‘An integrated design of active balancing and redundancy at module level for electric vehicle batteries’. 2012 IEEE Transportation Electrification Conf. and Expo (ITEC), 2012, pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2016.0019
Loading

Related content

content/journals/10.1049/iet-est.2016.0019
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address