http://iet.metastore.ingenta.com
1887

Dual input dual output power converter with one-step-ahead control for hybrid electric vehicle applications

Dual input dual output power converter with one-step-ahead control for hybrid electric vehicle applications

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electrical Systems in Transportation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The rapid conversion of automotive accessory loads to the electrical domain demands a power converter to interface between the on-board source and storage units with the accessories. This study proposes a simplified structure of dual input dual output (DIDO) with single-stage power conversion for hybrid electric vehicle accessory applications. The topology is synthesised using pulsating source cells. The generic switch model-based DIDO is realised with power switches based on switch realisation technique. Steady-state and equivalent circuit models describing the converter structure are presented. Numerical simulations were performed with the state-space averaged mathematical model. A one-step-ahead controller is used for inductor current control in conjunction with a mode selection logic to utilise its operating modes based on the availability of the sources and its protection. The performance of the proposed converter and its associated control scheme under steady-state, transient conditions are corroborated by simulation and experimental results.

References

    1. 1)
      • 1. Zehner, O.: ‘Unclean at any speed’, IEEE Spectr., 2013, 50, (7), pp. 4045.
    2. 2)
      • 2. Voelcker, J.: ‘Electric vehicles need more study, less emotion’, IEEE Spectr., 2013, 50, (8), pp. 88.
    3. 3)
      • 3. Kodjak, D.: ‘Consumer acceptance of electric vehicles in the US’ (The International Council for Clean Transportation, 2012), pp. 121.
    4. 4)
      • 4. Hasan, S.M.N., Anwar, M.N., Teimorzadeh, M., et al: ‘Features and challenges for auxiliary power module (APM) design for hybrid/electric vehicle applications’. Proc. IEEE Vehicle Power and Propulsion Conf., September 2011, pp. 16.
    5. 5)
      • 5. Bauman, J., Kazerani, M.: ‘A comparative study of fuel-cell–battery, fuel-cell–ultracapacitor, and fuel-cell–battery–ultracapacitor vehicles’, IEEE Trans. Veh. Technol., 2008, 57, (2), pp. 760769.
    6. 6)
      • 6. Matsuo, H., Lin, W., Kurokawa, F., et al: ‘Characteristics of the multiple-input DC–DC converter’, IEEE Trans. Ind. Electron., 2004, 51, (3), pp. 625631.
    7. 7)
      • 7. Tao, H., Kotsopoulos, A., Duarte, J.L., et al: ‘Transformer-coupled multiport ZVS bidirectional DC–DC converter with wide input range’, IEEE Trans. Power Electron., 2008, 23, (2), pp. 771781.
    8. 8)
      • 8. Benavides, N., Chapman, P.: ‘Power budgeting of a multiple-input buck-boost converter’, IEEE Trans. Power Electron., 2005, 20, (6), pp. 13031309.
    9. 9)
      • 9. Jiang, W., Fahimi, B.: ‘Multiport power electronic interface—concept, modeling, and design’, IEEE Trans. Power Electron., 2011, 26, (7), pp. 18901900.
    10. 10)
      • 10. Solero, L., Lidozzi, A., Pomilio, J.: ‘Design of multiple-input power converter for hybrid vehicles’, IEEE Trans. Power Electron., 2005, 20, (5), pp. 10071016.
    11. 11)
      • 11. Li, Z., Onar, O., Khaligh, A., et al: ‘Design and control of a multiple input DC/DC converter for battery/ultra-capacitor based electric vehicle power system’. Proc. Twenty-Fourth Annual IEEE Applied Power Electronics Conf. and Exposition, February 2009, pp. 591596.
    12. 12)
      • 12. Liu, Y.C., Chen, Y.M.: ‘A systematic approach to synthesizing multi-input DC–DC converters’, IEEE Trans. Power Electron., 2009, 24, (1), pp. 116127.
    13. 13)
      • 13. Behjati, H., Davoudi, A.: ‘A multiple-input multiple-output DC–DC converter’, IEEE Trans. Ind. Appl., 2013, 49, (3), pp. 14641479.
    14. 14)
      • 14. Tymerski, R., Vorperian, V.: ‘Generation and classification of PWM DC-to-DC converters’, IEEE Trans. Aerospace Electron. Syst., 1988, 24, (6), pp. 743754.
    15. 15)
      • 15. Kwasinski, A.: ‘Identification of feasible topologies for multiple-input DC–DC converters’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 856861.
    16. 16)
      • 16. Wu, H., Sun, K., Ding, S., et al: ‘Topology derivation of non-isolated three-port DC-DC converters from DIC and DOC’, IEEE Trans. Power Electron., 2013, 28, (7), pp. 32973307.
    17. 17)
      • 17. Grbovic, P.P.J., Delarue, P., Moigne, P.L., et al: ‘Modeling and control of the ultracapacitor-based regenerative controlled electric drives’, IEEE Trans. Ind. Electron., 2011, 58, (8), pp. 34713484.
    18. 18)
      • 18. Elgammal, A., Sharaf, A.: ‘Self-regulating particle swarm optimised controller for (photovoltaic–fuel cell) battery charging of hybrid electric vehicles’, IET Electr. Syst. Transport., 2012, 2, (2), pp. 7789.
    19. 19)
      • 19. Allègre, A.L., Trigui, R., Bouscayrol, A.: ‘Flexible real-time control of a hybrid energy storage system for electric vehicles’, IET Electr. Syst. Transport., 2013, 3, (3), pp. 7985.
    20. 20)
      • 20. Acuna, P., Moran, L., Rivera, M., et al: ‘Improved active power filter performance for renewable power generation systems’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 687694.
    21. 21)
      • 21. Dasika, J.D., Bahrani, B., Saeedifard, M., et al: ‘Multivariable control of single-inductor dual-output buck converters’, IEEE Trans. Power Electron., 2014, 29, (4), pp. 20612070.
    22. 22)
      • 22. Prodic, A., Erickson, R., Maksimovic, D.: ‘Predictive digital current programmed control’, IEEE Trans. Power Electron., 2003, 18, (1), pp. 411419.
    23. 23)
      • 23. Kirubakaran, A., Jain, S., Nema, R.K.: ‘DSP-controlled power electronic interface for fuel-cell-based distributed generation’, IEEE Trans. Power Electron., 2011, 26, (12), pp. 38533864.
    24. 24)
      • 24. Kaya, I.: ‘PI-PD controllers for controlling stable processes with inverse response and dead time’, Electr. Eng., 2015, 98, (1), pp. 5565.
    25. 25)
      • 25. Silva, W.A., Junior, A.B.S., Torrico, B.C., et al: ‘Generalized predictive control robust for position control of induction motor using field-oriented control’, Electr. Eng., 2015, 97, (3), pp. 195204.
    26. 26)
      • 26. Santhosh, T.K., Natarajan, K., Govindaraju, C.: ‘Synthesis and implementation of multi-port DC/DC converter for hybrid electric vehicle’, J. Power Electron., 2015, 15, (5), pp. 11781189.
    27. 27)
      • 27. Killat, D.: ‘A dual-mode single-inductor dual-output switching converter with small ripple’, IEEE Trans. Power Electron., 2010, 25, (3), pp. 614623.
    28. 28)
      • 28. Erickson, R., Maksimovic, D.: ‘Fundamentals of power electronics’ (Springer Press, 2001, 2nd edn.).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2016.0017
Loading

Related content

content/journals/10.1049/iet-est.2016.0017
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address