Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Optimisation of total traction current based on niche improved particle swarm algorithms

Due to the short distance between stations in DC mass transit systems, the trains accelerate and decelerate frequently with high traction current. If numerous trains are accelerating simultaneously, an extremely high traction current peak occurs. This current will have a great impact on the power supply system, and cause elevated rail potential in reflow system. This study presents an optimal model on traction current by adjusting the train's dwell time, reducing the coincidence degree when multi-train accelerate. Niche improved particle swarm algorithms for traction current optimisation is constructed. Optimised calculation results from the simulation of actual line show that the optimisation can significantly reduce the total maximum traction current value.

References

    1. 1)
      • 19. Shi, Y., Eberhart, R.C.: ‘Empirical study of particle swarm optimization’. Proc. of the Congress on Evolutionary Computation, 1999, pp. 19451950.
    2. 2)
      • 8. Gong, C., Zhang, S., Zhang, F., et al: ‘An integrated energy-efficient operation methodology for metro systems based on a real case of Shanghai metro line one’, Energies, 2014, 7, (11), pp. 73057329.
    3. 3)
      • 6. Kim, K.M., Oh, S., Han, M.: ‘A mathematical approach for reducing the maximum traction energy: the case of Korean MRT trains’, Lect. Notes Eng. Comput. Sci., 2010, 2182, (1), pp. 21692173.
    4. 4)
      • 10. Yang, X., Chen, A., Li, X., et al: ‘An energy-efficient scheduling approach to improve the utilization of regenerative energy for metro systems’, Transp. Res. C, Emerg. Technol., 2015, 57, pp. 1329.
    5. 5)
      • 7. Chen, E., Yang, X., Ding, Y.: ‘An energy-efficient adjustment approach in subway systems’. IEEE 17th Int. Conf. on Intelligent Transportation Systems (ITSC), 2014, 2014, pp. 27742779.
    6. 6)
      • 5. Chen, J.-F., Lin, R.-L., Liu, Y.-C.: ‘Optimization of an MRT train schedule reducing maximum traction power by using genetic algorithms’, IEEE Trans. Power Syst., 2005, 20, (3), pp. 13661372.
    7. 7)
      • 4. Lee, C.H., Lu, C.J.: ‘Assessment of grounding schemes on rail potential and stray currents in a DC transit system’, IEEE Trans. Power Deliv., 2006, 21, (4), pp. 19411947.
    8. 8)
      • 15. Kennedy, J., William, M.S.: ‘Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator’, www.aic.nrl.navy.mil/∼spears/papers/wcci98.ps.gz.
    9. 9)
      • 20. Shi, Y., Eberhart, R.: ‘A modified particle swarm optimizer’. IEEE Int. Conf. on Evolutionary Computation, 1998, pp. 6973.
    10. 10)
      • 11. Abido, M.A.: ‘Optimal design of power-system stabilizers using particle swarm optimization’, IEEE Trans. Energy Convers., 2002, 17, (3), pp. 406413.
    11. 11)
      • 3. Charalambous, C.A., Cotton, I., Aylott, P.: ‘A simulation tool to predict the impact of soil topologies on coupling between a light rail system and buried third-party infrastructure’, IEEE Trans. Veh. Technol., 2008, 57, (3), pp. 14041416.
    12. 12)
      • 17. Clerc, M., Kennedy, J.: ‘The particle swarm: explosion, stability and convergence in a multi-dimensional complex space’, IEEE Trans. Evol. Comput., 2010, 6, (1), pp. 5873.
    13. 13)
      • 12. Robinson, J., Rahmat-Samii, Y.: ‘Particle swarm optimization in electromagnetics’, IEEE Trans. Antennas Propag., 2004, 52, (2), pp. 397407.
    14. 14)
      • 13. Keynedy, J., Eberhart, R.C.: ‘Particle swarm optimization’. IEEE Int. Conf. on Neural Nerworks, 1995, pp. 19421948.
    15. 15)
      • 9. Yang, X., Li, X., Gao, Z., et al: ‘A cooperative scheduling model for timetable optimization in subway systems’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (1), pp. 438447.
    16. 16)
      • 2. Tzeng, Y., Lee, C.: ‘Analysis of rail potential and stray currents in a direct-current transit system’, IEEE Trans. Power Deliv., 2010, 25, (3), pp. 15161525.
    17. 17)
      • 18. Kennedy, J., Barnhart, R.: ‘Particle swarm optimization’. Proc. of the IEEE Int. Conf. on Neural Networks, 1995, pp. 19421948.
    18. 18)
      • 1. Liu, Y.C., Chen, J.F.: ‘Control scheme for reducing rail potential and stray current in MRT systems’, IEE Proc., Electr. Power Appl., 2005, 152, (3), pp. 612618.
    19. 19)
      • 14. Keynedy, J., Eberhart, R.C.: ‘A new optimizer using particle swarm theory’. 6th Int. Symp. on Micromachine and Human Science, 1995, pp. 3943.
    20. 20)
      • 16. Parsopoulos, K.E., Vrahatis, M.N.: ‘On the computation of all global minimizes through particle swarm optimization’, IEEE Trans. Evol. Comput., 2004, 8, (3), pp. 211233.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2015.0038
Loading

Related content

content/journals/10.1049/iet-est.2015.0038
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address