Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Artificial neural network-based fault diagnosis in the AC–DC converter of the power supply of series hybrid electric vehicle

AC–DC converter switches of the drive train of series hybrid electric vehicles (SHEVs) are generally exposed to the possibility of outbreak open-phase faults because of troubles with the switching devices. In this framework, the present study proposes an artificial neural network (ANN)-based method for fault diagnosis after extraction of a new pattern. The new pattern under AC–DC converter failure in view of SHEV application has been used for train-proposed ANN. To achieve this goal, four different levels of switches fault are considered on the basis of both simulation and experimental results. Ensuring the accuracy and generalisation of the introduced pattern, several parameters have been considered, namely: capacitor size changes, load, and speed variations. The experimental results validate the simulation results thoroughly.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • 7. Liukkonen, M., Suomela, J.: ‘Design of an energy management scheme for a series-hybrid power train’. 2012 IEEE Transportation Electrification Conf. and Expo (ITEC 2012), MI, USA.
    5. 5)
    6. 6)
      • 6. Zhang, M.: ‘HEV powertrain fundamentals’. Vehicle Power and Propulsion Conf. (VPPC) – 2011 IEEE and key not part in 2012 IEEE Transportation Electrification Conf. and Expo (ITEC 2012) –MI, USA, pp. 1144.
    7. 7)
      • 20. Cortes, C., Vapnik, V.N.: ‘Support-vector networks’, J. Mach. Learn., 1995, 20, (3), pp. 273297.
    8. 8)
    9. 9)
      • 27. Charfi, F., Sellami, F., Al-Haddad, K.: ‘Fault diagnostic in power system using wavelet transforms and neural networks’. Proc. ISIE, 2006, pp. 11431148.
    10. 10)
    11. 11)
    12. 12)
      • 19. Burges, C., Schoelkopf, B.: ‘Improving speed and accuracy of support vector learning machines’, Adv. Neural Inf. Process. Syst., 1997, 9, (3), pp. 375381, MIT Press.
    13. 13)
      • 33. Moosavi, S.S., Djerdir, A., Aït-Amirat, Y., et al: ‘Fault detection in 3-phase traction motor using artificial neural networks’. IEEE Transportation Electrification Conf. and Expo (ITEC 2012), MI, USA, 2012, pp. 16.
    14. 14)
    15. 15)
    16. 16)
      • 28. Kadri, F., Drid, S., Djeffal, F.Y., et al: ‘Neural classification method in fault detection and diagnosis for voltage source inverter in variable speed drive with induction motor’. Proc. EVER, 2013, pp. 15.
    17. 17)
      • 10. Tolbe, L.M., Peng, F.Z., Habetler, T.G.: ‘Multilevel inverters for electric vehicle applications’. WPET ’98, Dearborn, MI, USA, 1998, pp. 7984.
    18. 18)
    19. 19)
    20. 20)
      • 2. Cao, Z., Wu, S., Li, M., et al: ‘Series and parallel hybrid system performance comparison based on the city bus cycle’. Power and Energy Engineering Conf., APPEEC, 2009, pp. 15.
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • 34. Moosavi, S.S., Djerdir, A., Aït-Amirat, Y., et al: ‘Artificial neural networks based fault detection in 3-phase PMSM traction motor’. IEEE XXth Int. Conf. on Electrical Machines (ICEM'2012), Marseille, France, pp. 15791585.
    26. 26)
      • 24. Cunningham, P., Delany, S.J.: ‘k-Nearest neighbour classifiers’, Technical Report, UCD-CSI, (2007).
    27. 27)
      • 3. Seyed Saeid, M., Abdesslem, D., Youcef, A.-A.: ‘Fault detection investigation in a full bridge thyristor based AC–DC converter’. Industrial Electronics Society, IECON 2013–39th Annual Conf. of the IEEE, pp. 81808185.
    28. 28)
      • 5. Chan, C.C.: ‘The state of the art of electric and hybrid vehicles’. Proc. of the IEEE Journals & Magazines, February 2002, vol. 90, no. 2, pp 247275.
    29. 29)
    30. 30)
    31. 31)
      • 25. Weinberger, K.Q., Saul, L.K.: ‘Distance metric learning for large margin nearest neighbor classification’, J. Mach. Learn. Res., 2009, 10, pp. 207244.
    32. 32)
    33. 33)
    34. 34)
      • 35. Vas, P.: ‘Artificial intelligence based electrical machines and drives’ (Oxford university press, Oxford) Jan. 1999, p. 625.
    35. 35)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2014.0055
Loading

Related content

content/journals/10.1049/iet-est.2014.0055
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address