Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Flexible real-time control of a hybrid energy storage system for electric vehicles

A hybrid energy storage system (HESS) composed of electrochemical batteries and supercapacitors is considered. The supercapacitors aim to manage the peak power and thus increase the lifetime of the battery. A control scheme of this HESS is obtained by inversion of its energetic macroscopic representation. This control scheme enables different energy management strategies using a distribution input to share the energy between both devices. A switching strategy and a frequency strategy have been tested using this same control scheme. This flexible control scheme has been validated in real time by using a real HESS and a hardware-in-the-loop simulation of the traction system of an electric vehicle.

References

    1. 1)
      • 14. Ortuzar, M., Moreno, J., Dixon, J.: ‘Ultracapacitor-based auxiliary energy system for an electric vehicle: implementation and evaluation’, IEEE Trans. Ind. Electron., 2007, 54, (4), pp. 21472156 (doi: 10.1109/TIE.2007.894713).
    2. 2)
      • 20. Lhomme, W., Delarue, P., Bouscayrol, A., Lemoigne, P., Barrade, P., Rufer, A.: ‘Comparison of control strategies for maximizing energy in a supercapacitor storage subsystem’, EPE J., 2009, 19, (3), pp. 514.
    3. 3)
      • 10. Lemofouet, S., Rufer, A.: ‘A hybrid energy storage system based on compressed air and supercapacitors with maximum efficiency point tracking (MEPT)’, IEEE Trans. Ind. Electron., 2006, 53, (4), pp. 11051115 (doi: 10.1109/TIE.2006.878323).
    4. 4)
      • 7. Thounthong, P., Chunkag, V., Sethakul, P., Davat, B., Hinaje, M.: ‘Comparative study of fuel-cell vehicle hybridization with battery or supercapacitor storage device’, IEEE Trans. Veh. Technol., 2009, 58, (8), pp. 38923904 (doi: 10.1109/TVT.2009.2028571).
    5. 5)
      • 22. Allègre, A.L., Bouscayrol, A., Trigui, R.: ‘Influence of control strategies on battery/supercapacitor hybrid energy storage systems for traction applications’. IEEE-VPPC'09, Dearborn (USA), September 2009, pp. 213220.
    6. 6)
      • 19. Bouscayrol, A., Delarue, P.: ‘Simplifications of the maximum control structure of a wind energy conversion system with an induction generator’, Int. J. Renew. Energy Eng., 2002, 4, (2), pp. 479485.
    7. 7)
      • 6. Khaligh, A., Li, Z.: ‘Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: state of the art’, IEEE Trans. Veh. Technol., 2010, 59, (6), pp. 28062814 (doi: 10.1109/TVT.2010.2047877).
    8. 8)
      • 8. Zhou, H., Bhattacharya, T., Tran, D., Siew, T.S.T., Khambadkone, A.M.: ‘Composite energy storage system involving battery and ultracapacitor with dynamic energy management in microgrid applications’, IEEE Trans. Power Electron., 2011, 26, (3), pp. 923930 (doi: 10.1109/TPEL.2010.2095040).
    9. 9)
      • 5. Barrero, R., van Mierlo, J., Tackoen, X.: ‘Energy savings in public transport’, IEEE Veh. Technol. Mag., 2008, 3, (3), pp. 2636 (doi: 10.1109/MVT.2008.927485).
    10. 10)
      • 9. Azib, T., Bethoux, O., Remy, G., Marchand, C.: ‘Saturation management of a controlled fuel-cell/ultracapacitor hybrid vehicle’, IEEE Trans. Veh. Technol., 2011, 60, (9), pp. 41274138 (doi: 10.1109/TVT.2011.2165092).
    11. 11)
      • 4. Lukic, S.M., Emadi, A.: ‘Charging ahead’, IEEE Ind. Electron. Mag., 2008, 2, (4), pp. 2231. (doi: 10.1109/MIE.2008.930361).
    12. 12)
      • 27. Christen, T., Carlen, M.: ‘Theory of Ragone plots’, J. Power Sources, 2000, 91, (2), pp. 21016 (doi: 10.1016/S0378-7753(00)00474-2).
    13. 13)
      • 15. Moreno, J., Ortzar, M.E., Dixon, J.W.: ‘Energy-management system for a hybrid electric vehicle, using ultracapacitors and neural networks’, IEEE Trans. Ind. Electron., 2006, 53, pp. 6140 (doi: 10.1109/TIE.2006.870880).
    14. 14)
      • 28. Bouscayrol, A.: ‘Hardware-in-the-loop simulation’, ‘Industrial Electronics Handbook’, tome ‘Control and mechatronics’, in Wilamouski, B., Irwin, J.D. (eds.) (CRC Press, Taylor & Francis group, Chicago, 2010, 2nd edn.) Ch. 23, pp. 331/33–15, ISBN 978-1-4398-0287-8.
    15. 15)
      • 3. Burke, A.F.: ‘Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles’, Proc. IEEE, 2007, 95, (4), pp. 806820 (doi: 10.1109/JPROC.2007.892490).
    16. 16)
      • 24. Delarue, P., Bouscayrol, A., Semail, E.: ‘Generic control method of multi-leg voltage-source-converters for fast practical implementation’, IEEE Trans. Power Electron., 2003, 18, (2), pp. 517526 (doi: 10.1109/TPEL.2003.809349).
    17. 17)
      • 18. EMR (Energetic Macroscopic Representation) website: http://emr.univ-lille1.fr/.
    18. 18)
      • 29. Allègre, A.L.: ‘Methodologies for modeling and energy management of hybrid energy storage systems for electric and hybrid vehicles’. (text in French), PhD Dissertation, Université Lille1 (France), September 2010.
    19. 19)
      • 12. Jaafar, A., Akli, C.R., Sareni, B., Roboam, X., Jeunesse, A.: ‘Sizing and energy management of a hybrid locomotive based on flywheel and accumulators’, IEEE Trans. Veh. Technol., 2009, 58, (8), pp. 39473958 (doi: 10.1109/TVT.2009.2027328).
    20. 20)
      • 25. Salmasi, F.R.: ‘Control strategies for hybrid electric vehicles: evolution, classification, comparison and future trends’, IEEE Trans. Veh. Technol., 2007, 56, (3), pp. 23932404 (doi: 10.1109/TVT.2007.899933).
    21. 21)
      • 21. Bouscayrol, A., Lhomme, W., Delarue, P., Lemaire-Semail, B., Aksas, S.: ‘Hardware-in-the-loop simulation of electric vehicle traction systems using energetic macroscopic representation’. IEEE-IECON'06, Paris, November 2006, pp. 53195324.
    22. 22)
      • 2. Eshani, M., Gao, Y., Gay, S.E., Emadi, A.: ‘Modern electric, hybrid electric and fuel cell vehicles’ (CRC Press, New York, USA, 2005).
    23. 23)
      • 11. Ferreira, A.A., Pomilio, J.A., Spiazzi, G., de Araujo Silva, L.: ‘Energy management fuzzy logic supervisory for electric vehicle power supplies system’, IEEE Trans. Power Electron., 2008, 23, (1), pp. 107115 (doi: 10.1109/TPEL.2007.911799).
    24. 24)
      • 26. Akli, C.R., Roboam, X., Sareni, B., Jeunesse, A.: ‘Energy management and sizing of a hybrid locomotive’. EPE'2007, Aalborg (Denmark), September 2007.
    25. 25)
      • 23. Allègre, A.L., Trigui, R., Bouscayrol, A.: ‘Different energy management strategies of hybrid energy storage system (HESS) using batteries and supercapacitors for vehicular applications’. IEEE-VPPC'10, Lille, (France), September 2010.
    26. 26)
      • 1. Chan, C.C.: ‘The state of the art of electric, hybrid, and fuel cell vehicles’, Proc. IEEE, 2007, 95, (4), pp. 704718 (doi: 10.1109/JPROC.2007.892489).
    27. 27)
      • 17. Bouscayrol, A., Davat, B., de Fornel, B., et al: ‘Multimachine multiconverter system: application for electromechanical drives’, Eur. Phy. J. – Appl. Phys., 2000, 10, (2), pp. 131147 (doi: 10.1051/epjap:2000124).
    28. 28)
      • 13. Cao, J., Emadi, A.: ‘A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles’, IEEE Trans. Power Electron., 2012, 7, (1), pp. 122132..
    29. 29)
      • 16. Yoo, H., Sul, S.K., Park, Y., Jeong, J.: ‘System integration and power-flow management for a series hybrid electric vehicle, using supercapacitors and batteries’, IEEE Trans. Ind. Appl., 2008, 44, (1), pp. 106114 (doi: 10.1109/TIA.2007.912749).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2012.0051
Loading

Related content

content/journals/10.1049/iet-est.2012.0051
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address