Your browser does not support JavaScript!

access icon free Effect of vehicle mass changes on the accuracy of Kalman filter estimation of electric vehicle speed

The mechanical drivetrain dynamics of electric vehicles can have a detrimental effect on the performance of the vehicle speed controller. It is common for the speed measurement from the motor encoder to be used for the vehicle speed feedback, after taking into account the gear ratio, but it is not valid to assume that motor and vehicle speeds are equal during transient conditions. In this study it is shown how the vehicle driveability can be greatly improved if estimates of vehicle speed and mass are obtained. Estimates of vehicle speed and mass have been realised using a Kalman filter (KF) and a recursive least-squares estimator, and validated with experimental results. The study also shows the importance of finding the most optimal process noise matrix Q for the KF, this has been carried out using a genetic algorithm, with the estimation accuracy then compared with varying vehicle mass.


    1. 1)
      • 13. Gadoue, S., Giaouris, D., Finch, J.: ‘Artificial intelligence-based speed control of DTC induction motor drives-A comparative study’, Electr. Power Syst. Res., 2009, 79, (1), pp. 210219 (doi: 10.1016/j.epsr.2008.05.024).
    2. 2)
      • 6. Thomsen, S., Hoffmann, N., Fuchs, F.W.: ‘Pi control, pi-based state space control, and model-based predictive control for drive systems with elastically coupled loads-a comparative study’, IEEE Trans. Ind. Electron., 2011, 58, (8), pp. 36473657 (doi: 10.1109/TIE.2010.2089950).
    3. 3)
      • 2. Hodgson, D., Mecrow, B.C., Gadoue, S.M., Slater, H.J., Barrass, P.G., Giaouris, D.: ‘Accurate estimation of electric vehicle speed using kalman filtering in the presence of parameter variations’. Sixth IET Int. Conf., Power Electronics, Machines and Drives (PEMD 2012), March 2012, pp. 16.
    4. 4)
      • 10. Kweon, T.-J., Hyun, D.-S.: ‘High-performance speed control of electric machine using low-precision shaft encoder’, IEEE Trans. Power Electron.,1999, 14, (5), pp. 838849 (doi: 10.1109/63.788480).
    5. 5)
      • 17. Lingman, B.S.P.: ‘Road slope and vehicle mass estimation using kalman filtering’, Veh. Syst. Dyn., 2002, 37, pp. 1223.
    6. 6)
      • 9. Szabat, K., Orlowska-Kowalska, T.: ‘Performance improvement of industrial drives with mechanical elasticity using nonlinear adaptive Kalman filter’, IEEE Trans. Ind. Electron., 2008, 55, (3), pp. 10751084 (doi: 10.1109/TIE.2008.917081).
    7. 7)
      • 16. Simon, D.: ‘Optimal state estimation’ (Wiley–Interscience, 2006).
    8. 8)
      • 12. Karasalo, M., Hu, X.: ‘An optimization approach to adaptive Kalman filtering’, Automatica, 2011, 47, (8), pp. 17851793 (doi: 10.1016/j.automatica.2011.04.004).
    9. 9)
      • 18. Ohnishi, H., Ishii, J., Kayano, M., Katayama, H.: ‘A study road slope estimation for automatic transmission control’, JSAE review, April2000, pp. 235240 (doi: 10.1016/S0389-4304(99)00097-1).
    10. 10)
      • 20. Szabat, K., Orlowska-Kowalska, T.: ‘Performance improvement of industrial drives with mechanical elasticity using nonlinear adaptive Kalman filter’, IEEE Trans. Ind. Electron.,2008, 55, (3), pp. 10751084 (doi: 10.1109/TIE.2008.917081).
    11. 11)
      • 15. Nordin, P.G.M., Galic, J.: ‘New models for backlash and gear play’, Int. J. Adapt. Control Signal Process., 2006, 11, pp. 4963 (doi: 10.1002/(SICI)1099-1115(199702)11:1<49::AID-ACS394>3.0.CO;2-X).
    12. 12)
      • 14. Lagerberg, A., Egardt, B.: ‘Backlash estimation with application to automotive powertrains’, IEEE Trans. Control Syst. Technol., 2007, 15, (3), pp. 483493 (doi: 10.1109/TCST.2007.894643).
    13. 13)
      • 7. Szabat, K., Orlowska-Kowalska, T.: ‘Vibration suppression in a two-mass drive system using pi speed controller and additional feedbacks – comparative study’, IEEE Trans. Ind. Electron., 2007, 54, (2), pp. 11931206 (doi: 10.1109/TIE.2007.892608).
    14. 14)
      • 4. Amann, N., Bocker, J., Prenner, F.: ‘Active damping of drive train oscillations for an electrically driven vehicle’, IEEE/ASME Trans. Mechatronics, 2004, 9, (4), pp. 697700 (doi: 10.1109/TMECH.2004.839036).
    15. 15)
      • 5. Thomsen, S., Fuchs, F.: ‘Speed control of torsional drive systems with backlash’. 13th European Conf. Power Electronics and Applications, EPE'09. September 2009, pp. 110.
    16. 16)
      • 11. Yan, S., Xu, D., Wang, G., Yang, M., Yu, Y., Gui, X.: ‘Low speed control of pmac servo system based on reduced-order observer’. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, October 2006, pp. 48864889.
    17. 17)
      • 8. De Sousa, M.A.T.F., Caux, S., Fadel, M.: ‘Design of robust controllers for pmsm drive fed with PWM inverter with inertia load variation’, IEEE Internationl Symposium on Industrial Electronics, 2006, 1, pp. 217222.
    18. 18)
      • 19. Ming, T., Lin, G., Deliang, L.: ‘Sensorless permanent magnet synchronous motor drive using an optimized and normalized extended Kalman filter’. Int. Conf. Electrical Machines and Systems (ICEMS), August 2011, pp. 14.
    19. 19)
      • 3. Berriri, M., Chevrel, P., Lefebvre, D.: ‘Active damping of automotive powertrain oscillations by a partial torque compensator’, Control Eng. Pract., 2008, 16, (7), pp. 874883 (doi: 10.1016/j.conengprac.2007.10.010).
    20. 20)
      • 1. Vahidi, H.P.A., Stefanopoulou, A.: ‘Recursive least squares with forgetting for online estimation of vehicle mass and road grade: theory and experiments’, Veh. Syst. Dyn., 2005, 43, (1), pp. 3135 (doi: 10.1080/00423110412331290446).

Related content

This is a required field
Please enter a valid email address