http://iet.metastore.ingenta.com
1887

Effect of vehicle mass changes on the accuracy of Kalman filter estimation of electric vehicle speed

Effect of vehicle mass changes on the accuracy of Kalman filter estimation of electric vehicle speed

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electrical Systems in Transportation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The mechanical drivetrain dynamics of electric vehicles can have a detrimental effect on the performance of the vehicle speed controller. It is common for the speed measurement from the motor encoder to be used for the vehicle speed feedback, after taking into account the gear ratio, but it is not valid to assume that motor and vehicle speeds are equal during transient conditions. In this study it is shown how the vehicle driveability can be greatly improved if estimates of vehicle speed and mass are obtained. Estimates of vehicle speed and mass have been realised using a Kalman filter (KF) and a recursive least-squares estimator, and validated with experimental results. The study also shows the importance of finding the most optimal process noise matrix Q for the KF, this has been carried out using a genetic algorithm, with the estimation accuracy then compared with varying vehicle mass.

References

    1. 1)
      • 1. Vahidi, H.P.A., Stefanopoulou, A.: ‘Recursive least squares with forgetting for online estimation of vehicle mass and road grade: theory and experiments’, Veh. Syst. Dyn., 2005, 43, (1), pp. 3135 (doi: 10.1080/00423110412331290446).
    2. 2)
      • 2. Hodgson, D., Mecrow, B.C., Gadoue, S.M., Slater, H.J., Barrass, P.G., Giaouris, D.: ‘Accurate estimation of electric vehicle speed using kalman filtering in the presence of parameter variations’. Sixth IET Int. Conf., Power Electronics, Machines and Drives (PEMD 2012), March 2012, pp. 16.
    3. 3)
      • 3. Berriri, M., Chevrel, P., Lefebvre, D.: ‘Active damping of automotive powertrain oscillations by a partial torque compensator’, Control Eng. Pract., 2008, 16, (7), pp. 874883 (doi: 10.1016/j.conengprac.2007.10.010).
    4. 4)
      • 4. Amann, N., Bocker, J., Prenner, F.: ‘Active damping of drive train oscillations for an electrically driven vehicle’, IEEE/ASME Trans. Mechatronics, 2004, 9, (4), pp. 697700 (doi: 10.1109/TMECH.2004.839036).
    5. 5)
      • 5. Thomsen, S., Fuchs, F.: ‘Speed control of torsional drive systems with backlash’. 13th European Conf. Power Electronics and Applications, EPE'09. September 2009, pp. 110.
    6. 6)
      • 6. Thomsen, S., Hoffmann, N., Fuchs, F.W.: ‘Pi control, pi-based state space control, and model-based predictive control for drive systems with elastically coupled loads-a comparative study’, IEEE Trans. Ind. Electron., 2011, 58, (8), pp. 36473657 (doi: 10.1109/TIE.2010.2089950).
    7. 7)
      • 7. Szabat, K., Orlowska-Kowalska, T.: ‘Vibration suppression in a two-mass drive system using pi speed controller and additional feedbacks – comparative study’, IEEE Trans. Ind. Electron., 2007, 54, (2), pp. 11931206 (doi: 10.1109/TIE.2007.892608).
    8. 8)
      • 8. De Sousa, M.A.T.F., Caux, S., Fadel, M.: ‘Design of robust controllers for pmsm drive fed with PWM inverter with inertia load variation’, IEEE Internationl Symposium on Industrial Electronics, 2006, 1, pp. 217222.
    9. 9)
      • 9. Szabat, K., Orlowska-Kowalska, T.: ‘Performance improvement of industrial drives with mechanical elasticity using nonlinear adaptive Kalman filter’, IEEE Trans. Ind. Electron., 2008, 55, (3), pp. 10751084 (doi: 10.1109/TIE.2008.917081).
    10. 10)
      • 10. Kweon, T.-J., Hyun, D.-S.: ‘High-performance speed control of electric machine using low-precision shaft encoder’, IEEE Trans. Power Electron.,1999, 14, (5), pp. 838849 (doi: 10.1109/63.788480).
    11. 11)
      • 11. Yan, S., Xu, D., Wang, G., Yang, M., Yu, Y., Gui, X.: ‘Low speed control of pmac servo system based on reduced-order observer’. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, October 2006, pp. 48864889.
    12. 12)
      • 12. Karasalo, M., Hu, X.: ‘An optimization approach to adaptive Kalman filtering’, Automatica, 2011, 47, (8), pp. 17851793 (doi: 10.1016/j.automatica.2011.04.004).
    13. 13)
      • 13. Gadoue, S., Giaouris, D., Finch, J.: ‘Artificial intelligence-based speed control of DTC induction motor drives-A comparative study’, Electr. Power Syst. Res., 2009, 79, (1), pp. 210219 (doi: 10.1016/j.epsr.2008.05.024).
    14. 14)
      • 14. Lagerberg, A., Egardt, B.: ‘Backlash estimation with application to automotive powertrains’, IEEE Trans. Control Syst. Technol., 2007, 15, (3), pp. 483493 (doi: 10.1109/TCST.2007.894643).
    15. 15)
      • 15. Nordin, P.G.M., Galic, J.: ‘New models for backlash and gear play’, Int. J. Adapt. Control Signal Process., 2006, 11, pp. 4963 (doi: 10.1002/(SICI)1099-1115(199702)11:1<49::AID-ACS394>3.0.CO;2-X).
    16. 16)
      • 16. Simon, D.: ‘Optimal state estimation’ (Wiley–Interscience, 2006).
    17. 17)
      • 17. Lingman, B.S.P.: ‘Road slope and vehicle mass estimation using kalman filtering’, Veh. Syst. Dyn., 2002, 37, pp. 1223.
    18. 18)
      • 18. Ohnishi, H., Ishii, J., Kayano, M., Katayama, H.: ‘A study road slope estimation for automatic transmission control’, JSAE review, April2000, pp. 235240 (doi: 10.1016/S0389-4304(99)00097-1).
    19. 19)
      • 19. Ming, T., Lin, G., Deliang, L.: ‘Sensorless permanent magnet synchronous motor drive using an optimized and normalized extended Kalman filter’. Int. Conf. Electrical Machines and Systems (ICEMS), August 2011, pp. 14.
    20. 20)
      • 20. Szabat, K., Orlowska-Kowalska, T.: ‘Performance improvement of industrial drives with mechanical elasticity using nonlinear adaptive Kalman filter’, IEEE Trans. Ind. Electron.,2008, 55, (3), pp. 10751084 (doi: 10.1109/TIE.2008.917081).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2012.0027
Loading

Related content

content/journals/10.1049/iet-est.2012.0027
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address