access icon openaccess Multi-resistor BFCL for FRT capability improvement of DFIG-based wind farm

Grid connection of wind farms (WFs) results in increment of short circuit level and decrement of fault ride-through (FRT) capability under fault conditions. Application of bridge-type fault current limiter (BFCL) was recognised as a promising and cost effective solution to cope with these problems. However, full resistor insertion of the conventional BFCL provides high transient overvoltage at the terminal of wind generator under low voltage sag condition, which can lead to failure operation of wind generator in despite of FRT requirement. This study presents a voltage adaptive multi-resistor BFCL (MRBFCL) to solve these problems for wide voltage sag levels. According to the depth of voltage sag level at the grid coupling point voltage, the MRBFCL inserts an appropriate combinational of resistors to compensate voltage sag level at acceptable level. To verify the efficiency of the proposed MRBFCL, time domain simulations were performed in PSCAD/EMTDC software under three different voltage sag levels. Also, the MRBFCL performance is compared with the conventional single-resistor BFCL. Simulation results reveal that the MRBFCL effectively enhance the FRT performance of doubly-fed induction generator (DFIG)-based WFs under wide range of voltage sag level and alleviate over voltage for low voltage sag conditions.

Inspec keywords: power system simulation; power grids; resistors; asynchronous generators; power generation reliability; power supply quality; fault current limiters; wind power plants; failure analysis; power generation faults; time-domain analysis

Other keywords: bridge-type fault current limiter; resistor insertion; grid connection; MRBFCL performance; FRT performance; time domain simulations; fault ride-through capability; grid coupling point voltage; voltage adaptive multiresistor BFCL; doubly-fed induction generator-based WF; resistors; DFIG-based wind farm; voltage sag levels; acceptable level; wind generator; transient overvoltage; failure operation; PSCAD/EMTDC software; FRT capability improvement; short circuit level; fault conditions; low voltage sag condition

Subjects: Protection apparatus; Reliability; Asynchronous machines; Wind power plants; Resistors; Mathematical analysis; Power supply quality and harmonics

References

    1. 1)
      • 25. Nourmohamadi, H., Nazari-Heris, M., Sabahi, M., et al: ‘New structure of nonsuperconducting fault current limiter for wide ranges of currents based on PWM switching strategy’. 2017 Iranian Conf. on Electrical Engineering (ICEE), Tehran, 2017, pp. 11541158.
    2. 2)
      • 35. Elshiekh, M.E., Mansour, D.A., Azmy, A.M.: ‘Improving fault ride-through capability of DFIG-based wind turbine using superconducting fault current limiter’, IEEE Trans. Appl. Supercond., 2013, 23, (3), p. 5601204.
    3. 3)
      • 6. Nasiri, M., Milimonfared, J., Fathi, S.H.: ‘A review of low-voltage ride-through enhancement methods for permanent magnet synchronous generator based wind turbines’, Renew. Sust. Energy Rev., 2015, 47, pp. 399415.
    4. 4)
      • 15. Firouzi, M., Gharehpetian, G.B., Salami, Y.: ‘Active and reactive power control of wind farm for enhancement transient stability of multi-machine power system using UIPC’, IET Renew. Power Gener., 2017, 11, (8), pp. 12461252.
    5. 5)
      • 31. Firouzi, M., Gharehptian, G.B., Mozafari, B.: ‘Improvement of power system stability by using new switching technique in bridge-type fault current limiter’, Electr. Power Compon. Syst., 2014, 43, (2), pp. 234244.
    6. 6)
      • 10. Zhu, R., Chen, Zh.: ‘Closure to discussion on ‘virtual damping flux-based LVRT control for DFIG-based wind turbine’, IEEE Trans. Energy Convers., 2016, 31, (1), pp. 408409.
    7. 7)
      • 24. Hagh, M.T., Abapour, M.: ‘Nonsuperconducting fault current limiter with controlling the magnitudes of fault currents’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 613619.
    8. 8)
      • 21. Radmanesh, H., Fathi, S.H., Gharehpetian, G.B., et al: ‘Bridge-type solid-state fault current limiter based on AC/DC reactor’, IEEE Trans. Power Deliv., 2016, 31, (1), pp. 200209.
    9. 9)
      • 4. Firouzi, M., Gharehpetian, G.B., Mozafari, B.: ‘Power flow control and short circuit current limitation of wind farms using unified inter-phase power controller’, IEEE Trans. Power Del., 2017, 32, (1), pp. 6271.
    10. 10)
      • 18. Liu, J., Yao, W., Fang, J.K., et al: ‘Stability analysis and energy storage-based solution of wind farm during low voltage ride through’, Int. J. Electr. Power Energy Syst., 2018, 101, pp. 7584.
    11. 11)
      • 16. Yang, J., Fletcher, J., O'Reilly, J.: ‘A series-dynamic-resistor-based converter protection scheme for doubly-fed induction generator during various fault conditions’, IEEE Trans. Energy Convers., 2010, 25, (2), pp. 422432.
    12. 12)
      • 9. Djilali, L., Sanchez, E.N., Belkheiri, M.: ‘Real-time implementation of sliding-mode field-oriented control for a DFIG-based wind turbine’, Int. Trans. Electr. Energy Syst., 2018, 28, (5), pp. 126.
    13. 13)
      • 23. Radmanesh, H., Fathi, S.H.: ‘Fast AC reactor-based fault current limiters application in distribution network’, High Voltage, 2018, 3, (3), pp. 232243.
    14. 14)
      • 37. Chen, L., Deng, C., Zheng, F., et al: ‘Fault ride-through capability enhancement of DFIG-based wind turbine with a flux-coupling-type SFCL employed at different locations’, IEEE Trans. Appl. Supercond., 2015, 25, p. 5201505.
    15. 15)
      • 41. Rashid, G., Ali, M.H.: ‘Transient stability enhancement of double fed induction machine based wind generator by bridge-type fault current limiter’, IEEE Trans. Energy Convers., 2015, 30, (3), pp. 939947.
    16. 16)
      • 1. Edrah, M., Lo, K.L., Anaya-Lara, O.: ‘Impacts of high penetration of DFIG wind turbines on rotor angle stability of power systems’, IEEE Trans. Sustain. Energy, 2015, 6, (3), pp. 759766.
    17. 17)
      • 27. Firouzi, M., Gharehpetian, G.B., Pishvaei, M.: ‘THD reduction of PCC voltage by using the bridge-type FCL’, Int. Trans. Electr. Energy Syst., 2013, 23, (5), pp. 665668.
    18. 18)
      • 33. Shafaghatian, N., Heidary, A., Radmanesh, H., et al: ‘Microgrids interconnection to upstream AC grid using a dual-function fault current limiter and power flow controller: principle and test results’, IET Energy Syst. Integr., 2019, 1, (4), pp. 269275.
    19. 19)
      • 3. Tsili, M., Papathanassiou, S.: ‘A review of grid code technical requirements for wind farms’, IET Renew. Power Gener., 2009, 3, (12), pp. 308332.
    20. 20)
      • 13. Wessels, Ch., Gebhardt, F., Fuchs, F.W.: ‘Fault ride-through of a DFIG wind turbine using a dynamic voltage restorer during symmetrical and asymmetrical grid faults’, IEEE Trans. Power Electron., 2017, 26, (3), pp. 807815.
    21. 21)
      • 32. Heidary, A., Radmanesh, H., Rouzbehi, K., et al: ‘A multifunction high-temperature superconductive power flow controller and fault current limiter’, IEEE Trans. Appl. Supercond., 2020, 30, (5), pp. 18, Art no. 5601208.
    22. 22)
      • 34. Ghanbari, T., Farjah, E., Zandnia, A.: ‘Unidirectional fault current limiter: an efficient interface between the microgrid and main network’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 15911598.
    23. 23)
      • 29. Firouzi, M., Aslani, S., Gharehpetian, G.B., et al: ‘Effect of superconducting fault current limiters on successful interruption of circuit breakers’. IEEE Int. Conf. Renewable Energies and Power Quality (ICREPQ 2012), Santiago de Compostela Spain, 2012.
    24. 24)
    25. 25)
      • 17. Muyeen, S.M.: ‘A combined approach of using an SDBR and a STATCOM to enhance the stability of a wind farm’, IEEE Syst. J., 2015, 9, (3), pp. 922932.
    26. 26)
      • 11. Firouzi, M., Gharehpetian, G.B.: ‘LVRT performance enhancement of DFIG-based wind farms by capacitive bridge-type fault current limiter’, IEEE Trans. Energy Convers., 2018, 9, (3), pp. 11181125.
    27. 27)
      • 43. Fernandez, L., Garcia, C., Jurado, F.: ‘Equivalent model of wind farms by using aggregated wind turbines and equivalent winds’, Energy Covers. Manag., 2009, 50, pp. 691704.
    28. 28)
      • 2. Muljadi, E., Samaan, N., Gevorgian, V., et al: ‘Short circuit current contribution for different wind turbine generator types’. Proc. IEEE Power Energy Soc. Gen. Meeting, Providence, RI, USA, July 2010, pp. 18.
    29. 29)
      • 30. Radmanesh, H., Fathi, S.H.: ‘Parallel resonance type fault current limiting circuit breaker’, High Voltage, 2020, 5, (1), pp. 7682.
    30. 30)
      • 44. Mei, F., Pal, B.C.: ‘Modeling of doubly fed induction generator for power system stability study’. Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE, Pittsburgh, PA, 20–24 July, pp. 18.
    31. 31)
      • 20. Heidary, A., Radmanesh, H., Moghim, A., et al: ‘A multi-inductor h bridge fault current limiter’, Electronics. (Basel), 2019, 8, (7), p. 795. Available at https://doi.org/10.3390/electronics8070795.
    32. 32)
      • 19. Heidary, A., Radmanesh, H., Bakhshi, A., et al: ‘A compound current limiter and circuit breaker’, Electronics, 2019, 8, (5), p. 551. Available at https://doi.org/10.3390/electronics8050551.
    33. 33)
      • 8. Cárdenas, R., Peña, R., Alepuz, S., et al: ‘Overview of control systems for the operation of DFIGs in wind energy applications’, IEEE Trans. Ind. Electron., 2013, 60, (7), pp. 27762798.
    34. 34)
      • 38. Moghimyan, M.M., Radmehr, M., Firouzi, M., et al: ‘Series resonance fault current limiter (SRFCL) with MOV for LVRT enhancement in DFIG-based wind farms’, Electr. Power Compon. Syst., 2020. 47, (19–20), pp. 18141825. Available at https://doi.org/10.1080/15325008.2020.1731873.
    35. 35)
      • 39. Firouzi, M., Gharehpetian, G.B.: ‘Improving fault ride-through capability of fixed-speed wind turbine by using bridge-type fault current limiter’, IEEE Trans. Energy Convers., 2013, 28, (2), pp. 361369.
    36. 36)
      • 7. Mohammadi, J., Afsharnia, S., Vaez-Zadeh, S., et al: ‘Improved fault ride through strategy for doubly fed induction generator based wind turbines under both symmetrical and asymmetrical grid faults’, IET Renew. Power Gener., 2016, 10, (8), pp. 11141122.
    37. 37)
      • 26. Radmanesh, H., Fathi, H., Gharehpetian, G.B.: ‘Series transformer-based solid state fault current limiter’, IEEE Trans. Smart Grid, 2015, 6, (4), pp. 19831991.
    38. 38)
      • 14. Firouzi, M., Gharehpetian, G.B., Mozafari, S.B.: ‘Application of UIPC to improve power system stability and LVRT capability of SCIG-based wind farms’, IET Gener. Transm. Distrib., 2017, 11, (9), pp. 23142322.
    39. 39)
      • 5. Chen, Z., Li, H.: ‘Overview of different wind generator systems and their comparisons’, IET Renew. Power Gener., 2008, 2, pp. 123138.
    40. 40)
      • 12. Sree Latha, K., Latha Kumar, M.V.: ‘STATCOM for enhancement of voltage stability of a DFIG driven wind turbine’. Proc. Power Energy Syst. Conf. Sustain. Energy, Bangalore, India, March 2014, pp. 15.
    41. 41)
      • 36. Tripathi, P.M., Sahoo, S.S., Chatterjee, K.: ‘Enhancement of low-voltage ride through of wind energy conversion system using superconducting saturated core fault current limiter’, Int. Trans. Electr. Energy Syst., 2019, 29, (4), pp. 119.
    42. 42)
      • 42. Kartijkolaie, H.S., Radmehr, M.: ‘LVRT capability enhancement of DFIG-based wind farms by using capacitive DC reactor-type fault current limiter’, Int. J. Electr. Power Energy Syst., 2018, 102, pp. 287295.
    43. 43)
      • 28. Heidary, A., Radmanesh, H.R., Fathi, S.H., et al: ‘Series transformer based diode-bridge-type solid state fault current limiter’, Frontiers Inf. Technol. Electron. Eng., 2015, 16, (9), pp. 769784.
    44. 44)
      • 22. Heidary, A., Radmanesh, H., Naghibi, S.H, et al: ‘Distribution system protection by coordinated fault current limiters’, IET Energy Syst. Integration, 2020, 2, (1), pp. 5965.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-esi.2020.0010
Loading

Related content

content/journals/10.1049/iet-esi.2020.0010
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading