access icon openaccess Robust control approach for the integration of DC-grid based wind energy conversion system

This study presents a current decomposition technique based on a novel instantaneous power theory for better power quality and reliability of a dc-grid based wind energy conversion system (WECS) used on a poultry farm. The proposed approach also offers adequate control for the parallel operation of multiple distributed generations independent of the requirement of voltage and frequency synchronisation. In addition to that, a 17-level hybrid cascaded multilevel inverter is considered and integrated by utilising a three-level flying capacitor inverter and cascading it with three floating capacitor H-bridges. The presence of single dc-link voltage facilitates the back to back operation with a reduced dv/dt ratio, common-mode voltage variation, and operations under varying load power factors and modulation index. Moreover, for attaining better power management especially in the islanded mode of operation, the battery energy storage device is incorporated. The proposed WECS has been tested through MATLAB/Simulink software simulation under various conditions to facilitate better power quality, increase the flexibility and reliability in the micro-grid operation.

Inspec keywords: power generation control; power generation reliability; power grids; invertors; power capacitors; wind power plants; voltage control; robust control; power supply quality; synchronisation; distributed power generation; power factor; battery storage plants

Other keywords: load power factors; WECS; novel instantaneous power theory; single dc-link voltage; power quality; voltage synchronisation; DC-grid based wind energy conversion system; modulation index; 17-level hybrid cascaded multilevel inverter; common-mode voltage variation; poultry farm; robust control approach; frequency synchronisation; Matlab-Simulink software simulation; current decomposition technique; power management; three-level flying capacitor inverter; multiple distributed generations; reduced dv-dt ratio; reliability; instantaneous power theory; battery energy storage device; floating capacitor H-bridges

Subjects: Other power apparatus and electric machines; Reliability; Other power stations and plants; Voltage control; Control of electric power systems; Distributed power generation; Stability in control theory; Wind power plants; DC-AC power convertors (invertors); Power supply quality and harmonics

References

    1. 1)
      • 5. Mogstad, A.B., Molinas, M., Olsen, P.K., et al: ‘A power conversion system for offshore wind parks’. 2008 34th Annual Conf. of IEEE Industrial Electronics (IECON 2008), Orlando, FL, USA, 2008.
    2. 2)
      • 23. Willems, J.L.: ‘A new interpretation of the Akagi–Nabae power components for nonsinusoidal three-phase situations’, IEEE Trans. Instrum. Meas., 1992, 41, (4), pp. 523527.
    3. 3)
      • 1. Czarick, M., Worley, J.: ‘Wind turbines and tunnel fans’, Poultry Housing Tips, 2010, 22, (7), pp. 12.
    4. 4)
      • 15. Sahoo, B., Routray, S.K., Rout, P.K.: ‘Artificial neural network-based PI-controlled reduced switch cascaded multilevel inverter operation in wind energy conversion system with solid-state transformer’, Iran. J. Sci. Technol., Trans. Electr. Eng., 2019, 43, pp. 10531073.
    5. 5)
      • 13. Marchesoni, M., Mazzucchelli, M., Tenconi, S.: ‘A nonconventional power converter for plasma stabilization’, IEEE Trans. Power Electron., 1990, 5, (2), pp. 212219.
    6. 6)
      • 34. Sahoo, B., Routray, S.K., Rout, P.K.: ‘A new topology with the repetitive controller of a reduced switch seven-level cascaded inverter for a solar PV-battery based microgrid’, Eng. Sci. Technol. Int. J., 2018, 21, pp. 639653.
    7. 7)
      • 19. Glinka, M.: ‘Prototype of multiphase modular-multilevel-converter with 2 MW power rating and 17-level-output-voltage’. 2004 IEEE 35th Annual Power Electronics Specialists Conf. (PESC 04), Aachen, Germany, Vol. 4, 2004.
    8. 8)
      • 3. Thornton, P.K., Herrero, M., Ericksen, P.J.: ‘Livestock and climate change’ (Nairobi, Kenya, 2011).
    9. 9)
      • 20. Hirofumi, A., Hirokazu Watanabe, E., Aredes, M.: ‘Instantaneous power theory and applications to power conditioning', Vol. 62 (John Wiley & Sons, 2017).
    10. 10)
      • 9. Zhang, B., Cao, G., Ren, C., et al: ‘Autonomous operation of hybrid AC–DC microgrids’. 2010 IEEE Int. Conf. on Sustainable Energy Technologies (ICSET), Siem Reap, Cambodia, 2010.
    11. 11)
      • 17. Barbosa, P., Steimer, P., Meysenc, L., et al: ‘Active neutral-point-clamped multilevel converters’. 2005 IEEE 36th Power Electronics Specialists Conf. (PESC'05), Recife, Brazil, 2005.
    12. 12)
      • 28. Dragicevic, T., Guerrero, J.M., Vasquez, J.C., et al: ‘Supervisory control of an adaptive-droop regulated DC microgrid with battery management capability’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 695706.
    13. 13)
      • 10. Loh, P.C., Li, D., Chai, Y.K., et al: ‘Autonomous operation of hybrid AC–DC microgrids with progressive energy flow tuning’. 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conf. and Exposition (APEC), Orlando, FL, USA, 2012.
    14. 14)
      • 26. Sahoo, B., Routray, S.K., Rout, P.K.: ‘Repetitive control and cascaded multilevel inverter with integrated hybrid active filter capability for wind energy conversion system’, Eng. Sci. Technol. Int. J., 2019, 22, pp. 811826.
    15. 15)
      • 4. Harmon, J.D., Mark Hanna, H., Petersen, D.: ‘Farm energy: energy efficient fans for poultry production’ (Iowa State University Extension and Outreach publications in the Iowa State University, 2010).
    16. 16)
      • 11. Massoud, A.M., Ahmed, S., Enjeti, P.N., et al:Evaluation of a multilevel cascaded-type dynamic voltage restorer employing discontinuous space vector modulation’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 23982410.
    17. 17)
      • 30. Kato, T., Tamura, K., Matsuyama, T.: ‘Adaptive storage battery management based on the energy on demand protocol’. 2012 IEEE Third Int. Conf. on Smart Grid Communications (SmartGridComm), Tainan, Taiwan, 2012.
    18. 18)
      • 27. Chen, S.X., Gooi, H.B., Wang, M.: ‘Sizing of energy storage for microgrids’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 142151.
    19. 19)
      • 32. Hill, C.A., Such, M.C., Chen, D., et al: ‘Battery energy storage for enabling integration of distributed solar power generation’, IEEE Trans. Smart Grid, 2012, 3, (2), pp. 850857.
    20. 20)
      • 14. Syed, I., Khadkikar, V.: ‘Replacing the grid interface transformer in wind energy conversion system with solid-state transformer’, IEEE Trans. Power Syst., 2016, 32, (3), pp. 21522160.
    21. 21)
      • 25. Babaei, E., Hosseini, S.H.: ‘New cascaded multilevel inverter topology with minimum number of switches’, Energy Convers. Manage., 2009, 50, (11), pp. 27612767.
    22. 22)
      • 33. Kumar, P.R., Kaarthik, R.S., Gopakumar, K., et al: ‘Seventeen-level inverter formed by cascading flying capacitor and floating capacitor H-bridges’, IEEE Trans. Power Electron., 2015, 30, (7), pp. 34713478.
    23. 23)
      • 29. Coleman, M., Chi Kwan Lee Chunbo Zhu, , et al: ‘State-of-charge determination from EMF voltage estimation: using impedance, terminal voltage, and current for lead-acid and lithium-ion batteries’, IEEE Trans. Ind. Electron., 2007, 54, (5), pp. 25502557.
    24. 24)
      • 31. Xu, L., Chen, D.: ‘Control and operation of a DC microgrid with variable generation and energy storage’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 25132522.
    25. 25)
      • 24. Tenti, P., Paredes, H.K.M., Mattavelli, P.: ‘Conservative power theory, a framework to approach control and accountability issues in smart microgrids’, IEEE Trans. Power Electron., 2011, 26, (3), pp. 664673.
    26. 26)
      • 21. Peng, F.Z., Lai, J.-S.: ‘Generalized instantaneous reactive power theory for three-phase power systems’, IEEE Trans. Instrum. Meas., 1996, 45, (1), pp. 293297.
    27. 27)
      • 6. Mogstad, A.B., Molinas, M.: ‘Power collection and integration on the electric grid from offshore wind parks’. Nordic Workshop on Power and Industrial Electronics (NORPIE/2008), Espoo, Finland, June 9–11, 2008,.
    28. 28)
      • 35. Sahoo, B., Routray, S.K., Rout, P.K.: ‘Sādhanā (2020) 45: 13'. Available at https://doi.org/10.1007/s12046-019-1243-5.
    29. 29)
      • 7. Jovcic, D.: ‘Offshore wind farm with a series multiterminal CSI HVDC’, Electr. Power Syst. Res., 2008, 78, (4), pp. 747755.
    30. 30)
      • 16. Khoucha, F., Lagoun, S.M., Marouani, K., et al: ‘Hybrid cascaded H-bridges multilevel motor drive control for electric vehicles’. 2006 37th IEEE Power Electronics Specialists Conf. (PESC'06), Vilamoura, Portugal, 2006.
    31. 31)
      • 18. Chaudhuri, T., Rufer, A., Steimer, P.K.: ‘The common cross-connected stage for the 5L ANPC medium voltage multilevel inverter’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 22792286.
    32. 32)
      • 2. Garnett, T.: ‘Livestock and climate change’, in ‘The meat crisis' (Routledge, 2017), pp. 3151.
    33. 33)
      • 8. Liu, X., Wang, P., Loh, P. C.: ‘A hybrid AC/DC microgrid and its coordination control’, IEEE Trans. Smart Grid, 2011, 2, (2), pp. 278286.
    34. 34)
      • 12. Rivera, S., Kouro, S., Wu, B., et al: ‘Multilevel direct power control—a generalized approach for grid-tied multilevel converter applications’, IEEE Trans. Power Electron., 2014, 29, (10), pp. 55925604.
    35. 35)
      • 22. Sahoo, B., Routray, S.K., Rout, P.: ‘Integration of wind power generation through an enhanced instantaneous power theory’, IET Energy Syst. Integr., 2020.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-esi.2019.0112
Loading

Related content

content/journals/10.1049/iet-esi.2019.0112
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading