Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Flexibility provision through enhanced synergies between electricity, gas and heat systems: a comparative analysis of market and regulatory frameworks in seven case study countries

With the increased share of renewable energy sources, there is a growing need for more flexibility to ensure the efficient and reliable operation of the electricity system. Multi-energy systems (MES) now appear as one possible means to provide such flexibility through increased synergies between electricity, gas, and heating/cooling systems. In this context, the main findings of the study carried out in the MAGNITUDE European project are described. The most relevant services that could be provided by MES to the electricity system are first presented. Then a methodology is proposed to characterise and compare the market organisations and mechanisms for their procurement. The results of its application in seven case study countries are summarised and illustrate the diversity met between countries. The gas and heat sectors are also investigated for the seven countries to characterise the main aspects relevant to the provision of the services by MES. A comparative analysis is then carried out between the three energy sectors in the seven countries and highlights the major similarities and differences. Finally, potential barriers for the provision of the services by MES are discussed regarding the market, regulatory, and cultural aspects.

References

    1. 1)
      • 14. Sandberg, E., Kilkerud, J., Tromborg, E., et al: ‘Energy system impacts of grid tariff structures for flexible power-to-district heat’, Energy, 2019, 168, pp. 772781.
    2. 2)
      • 30. Torbaghan, S., Virag, A., Le Cadre, H., et al: ‘D3.3 – specification of the multi-energy market simulator’, MAGNITUDE, 2019.
    3. 3)
      • 51. European Union, DIRECTIVE 2009/73/EC of 13 July 2009 concerning common rules for the internal market in natural gas and repealing Directive 2003/55/EC’, European Union, Brussels, 2009.
    4. 4)
      • 31. EU-SysFlex: ‘EU-SysFlex H2020 European project -Pan-European system with an efficient coordinated use of flexibilities for the integration of a large share of RES’, 2018. Available at http://eu-sysflex.com/. EU-SYSFLEX project, 2018. Available at https://eu-sysflex.com/ (accessed 2019).
    5. 5)
      • 2. Gabrielli, P., Gazzani, M., Martelli, E., et al: ‘Optimal design of multi-energy systems with seasonal storage’, Appl. Energy, 2018, 219, pp. 408424.
    6. 6)
      • 53. European Commission, ‘Quarterly Report on European Gas Markets, Market Observatory for Energy, Volume 11, issue 4, fourth quarter of 2018’, European Commission, Brussels, 2018.
    7. 7)
      • 39. RTE Réseau de transport d’électricité, French electricity Balancing roadmap: green paper, RTE, La Défense, 2016.
    8. 8)
      • 17. ENTSOE: ‘Survey on ancillary services procurement, balancing market design 2016’, 2017, Brussels.
    9. 9)
      • 55. Energimarknadsinspektionen (Swedish Energy Markets Inspectorate): ‘The Swedish electricity and natural gas market 2018’ (Swedish Energy Markets Inspectorate, Eskilstuna, 2019).
    10. 10)
      • 56. UK Energy research Centre: ‘Flexibility in Great Britain's gas networks: analysis of linepack and linepack flexibility using hourly data’ (UK Energy Research Centre (UKERC), London, 2019).
    11. 11)
      • 42. ENERGINET: ‘Technical conditions for participating in automatic balancing in Denmark’, Frederica, 2016.
    12. 12)
      • 38. Commission de Régulation de l'Energie, Roadmap on French electricity, CRE, Paris, 2017.
    13. 13)
      • 1. Bloess, A., Schill, W., Zerrahn, A.: ‘Power-to-heat for renewable energy integration: a review of technologies’, Appl. Energy, 2018, 212, pp. 16111626.
    14. 14)
      • 65. Holzleitner, M., Moser, S.: ‘Energy efficiency in the district heating: an analysis of the renewable energy directive regarding alternative feed-in options’. ECEEE Summer Study Proc., Belambra Presqu'île de Giens, France, 2019, pp. 891898.
    15. 15)
      • 18. EU-SYSFLEX: ‘State-of-the-art literature review of systems scarcities at high levels of renewable generation’, EU-SYSFLEX, 2018.
    16. 16)
      • 49. EURACTIV: ‘The evolving role of gas storage in Europe’, EURACTIV, 17 May 2019. Available at https://www.euractiv.com/section/energy/news/the-evolving-role-of-gas-storage-in-europe/ (accessed May 2019).
    17. 17)
      • 23. Hu, J., Harmsen, R., Crijns-Graus, W., et al: ‘Identifying barriers to large-scale integration of variable renewable electricity into the market: a literature review of market design’, Renew. Sustain. Energy Rev, 2018, 81, pp. 21812195.
    18. 18)
      • 70. E-Control: ‘E-Control Regulation Commission OrdinanceSettingthe Electricity System Charges (Electricity System Charges Ordinance 2018)’, 2018. [En ligne]. Available at https://www.e-control.at/documents/20903/443907/SNE-V_2018+_2017-11-29+final_en.pdf/de2d5753-781a-f4ef-c019-0453ffdcda4e (accessed 26 June 2019).
    19. 19)
      • 19. SmartNet: ‘Ancillary service provision by RES and DSM connected at distribution level in the future power system’, 2016.
    20. 20)
      • 52. ENERGINET, Emergency plan – Energinet rules for gas transport, Doc.18/03267-13, page 9, ENERGINET, Fredericia, 2018.
    21. 21)
      • 10. Zhong, W., Xie, K., Yang, C., et al: ‘Auction mechanisms for energy trading in multi-energy systems’, IEEE Trans. Ind. Inf., 2018, 14, (4), pp. 15111521.
    22. 22)
      • 6. Schweiger, G., Rantzer, J., Ericsson, K., et al: ‘The potential of power-to-heat in Swedish district heating systems’, Energy, 2017, 137, pp. 661669.
    23. 23)
      • 25. MAGNITUDE Consortium: ‘MAGNITUDE – bringing flexibility provided by multi energy carrier integration to a new MAGNITUDE’. Available at https://www.magnitude-project.eu/ (accessed 2019).
    24. 24)
      • 13. Bergaentzlé, C., Jensen, I., Skytte, K., et al: ‘Electricity grid tariffs as a tool for flexible energy systems: a Danish case’, Energy Policy, 2019, 126, pp. 1221.
    25. 25)
      • 12. Skytte, K., Olsen, O., Soysal, E., et al: ‘Barriers for district heating as a source of flexibility for the electricity system’, J. Energy Markets, 2017, 10, (2), pp. 119.
    26. 26)
      • 54. European Commission, ‘Quo vadis EU gas market – Study on a Gas Market Design for Europe’, European Commission, Brussels, 2018.
    27. 27)
      • 7. Yilmaz, H.Ü., Keles, D., Chiodi, A., et al: ‘Analysis of the power-to-heat potential in the european energy’, Energy Strategy Rev., 2018, 20, pp. 619.
    28. 28)
      • 34. OFGEM: ‘Decision: Default tariff cap – Overview document’, OFGEM, London, 2018.
    29. 29)
      • 60. SNCU (French Syndicate of District Heating Operators): ‘Enquête nationale sur les réseaux de chaleur et de froid’, 2017.
    30. 30)
      • 68. TemaNord for Nordic Energy Regulators, Demand-side flexibility in the Nordic electricity market: from a distribution system operator perspective, Nordic Council of Ministers, 2017.
    31. 31)
      • 22. EU-SYSFLEX Project: ‘Models for simulating technical scarcities on the European power system with high levels of renewable generation’, 2018.
    32. 32)
      • 20. Smart Energy Demand Coalition (SEDC): ‘Explicit demand response in Europe: mapping the markets 2017’, Brussels, 2017.
    33. 33)
      • 4. Mancarella, P.: ‘MES (multi-energy systems): an overview of concepts and evaluation models’, Energy, 2014, 65, pp. 117.
    34. 34)
      • 48. Stopa, J., Kosowski, P.: ‘Underground gas storage in EUROPE – energy safety and its cost’. 27th World Gas Conf., Washington, 2018.
    35. 35)
      • 29. Kessels, K., Torbaghan, S., Virag, A., et al: ‘Evaluation of future market designs for multi-energy systems’, 2019. Available at https://www.magnitude-project.eu/.
    36. 36)
      • 63. Werner, S.: ‘District heating and cooling in Sweden’, Energy, 2017, 126, (1), pp. 419429.
    37. 37)
      • 66. Dansk Energi: ‘Mulighederne for den fremtidige fjernvarmeproduction i decentrale områder’, Analyse, n° %19, 2013.
    38. 38)
      • 32. MIGRATE H2020 European project: ‘Deliverable D1.1: Report on systemic issues’, 2016.
    39. 39)
      • 57. ORSTED: ‘Europe powered by green energy, how the north seas can lead the change’ (ORSTED, Gentofte, 2017).
    40. 40)
      • 35. European Commission: ‘Final report of the sector inquiry on capacity mechanisms’, European Commission, Brussels, 2016.
    41. 41)
      • 24. POYRY and Imperial College: ‘Roadmap for flexibility services to 2030: report to the committee on climate change’, 2017.
    42. 42)
      • 9. Kessels, K., Leclercq, G., Sels, P., et al: ‘Innovative market schemes for integrated for integrated multi-energy systems’. Int. Conf. on the European Energy Market (EEM), Ljubljana, Slovenia, 2019.
    43. 43)
      • 27. Li, H., Nookuea, W., Campana, P., et al: ‘Cartography of the flexibility services provided by heating/cooling, storage and gas technology and systems to the electricity system’, 2019. Available at https://www.magnitude-project.eu/.
    44. 44)
      • 67. Raux-Defossez, P., Pétillon, D., Bialecki, A., et al: ‘Grid services provided by the interactions of energy sectors in multi-energy systems: three international case studies’, Chez Energy Proc., 2018, 15, pp. 209227.
    45. 45)
      • 15. Skytte, K., Bergaentzlé, C., Fausto, F.J., et al: ‘Flexible nordic energy systems: Policy brief – key recommendationsProject Flex4RES (Nordic Energy Research, Oslo, Norway, 2019).
    46. 46)
      • 36. Commission de Régulation de l'Electricité et du Gaz (France), Roadmap on French electricity balancing, CRE, 2017.
    47. 47)
      • 21. EU-SysFlex: ‘Product definition for innovative system services’. EU-SYSFLEX, 2019.
    48. 48)
      • 46. The Carbon Trust for BEIS: ‘Evidence Gathering – Low Carbon Heating Technologies: domestic hybrid heat pumps’, BEIS, London, 2016.
    49. 49)
      • 45. Element Energy Limited for Department BEIS: ‘Hybrid heat pumps: final report’, Element Energy, Cambridge, 2017.
    50. 50)
      • 44. ENTSOE: ‘Explanatory document to all TSOs’ proposal for the implementation framework for a European platform for the exchange of balancing energy from frequency restoration reserves with automatic activation (online)’, 2018. Available at https EBGL/EBGL_A21_181218_ALL%20TSOs%20proposal_aFRRIF_explanatory_document_for%20submission.pdf?Web=0 (accessed 2019).
    51. 51)
      • 28. Pini, N., Witkowski, K., Seidelt, S., et al: ‘Technology and case studies factsheets’, 2019. Available at https://www.magnitude-project.eu/.
    52. 52)
      • 47. IEA Annex 45 Working Group from the Technology Collaboration Program on Heat Pumping Technologies: ‘Hybrid heat pumps: IEA HPT Annex 45 Final report’, 2019.
    53. 53)
      • 58. Mi, J., Khodayar, M.: ‘Operation of natural gas and electricity networks with line pack’, J. Mod. Power Syst. Clean Energy, 2019, 7, (5), pp. 10561070.
    54. 54)
      • 16. Flex4RES: ‘Framework conditions for flexibility in the district heating-electricity interface’, Flexible Nordic Energy Systems, 2016.
    55. 55)
      • 64. Boldt, J.: ‘The district heating system in greater Copenhagen area – in a free power market’. Chez EnergyLab Nordhavn Seminar, Nordhavn, 2018.
    56. 56)
      • 33. Conseil d'Etat, République Française: ‘Décisision du Conseil d'Etat sur les tarifs réglementés de vente d’électricité’, 2018, Paris.
    57. 57)
      • 8. ERA-Net Smart Energy Systems: ‘Innovation for smart energy systems in Europe’, 2019. Available at https://www.eranet-smartenergysystems.eu/ (accessed 2019).
    58. 58)
      • 40. Neuhoff, K., Hobbs, B., Newbery, D.: ‘Congestion Management in European Power Networks: Criteria to Assess the Available Options’, DIW, Berlin, 2011.
    59. 59)
      • 37. European Commission: ‘COMMISSION REGULATION (EU) 2017/2195 of 23 November 2017 establishing a guideline on electricity balancing’, European Commission, Brussels, 2017.
    60. 60)
      • 3. Zheng, J., Zhou, Z., Zhao, J., et al: ‘Effects of the operation regulation modes of district heating system on an integrated heat and power dispatch system for wind power integration’, Appl. Energy, 2018, 230, pp. 11261139.
    61. 61)
      • 43. ENTSOE: ‘Consultation on the design of the platform for automatic Frequency Restoration Reserve (aFRR) of PICASSO region (online)’, 2017. Available at https://www.entsoe.eu/network_codes/eb/picasso/ (accessed 2019).
    62. 62)
      • 26. Cauret, L., Belhomme, R., Raux-Defossez, P., et al: ‘Benchmark of markets and regulations for electricity, gas and heat and overview of flexibility services to the electricity grid’, 2019. Available at https://www.magnitude-project.eu/.
    63. 63)
      • 5. Mancarella, P., Andersson, G., Peca-Lopes, J., et al: ‘Modelling of integrated multi-energy systems: drivers, requirements, and opportunities (Invited Paper)’. 19th Power Systems Computation Conference (PSCC) 2016, Genoa, Italy, 2016.
    64. 64)
      • 50. Cornot-Gandolphe, S.: ‘Ten major trends in the European gas market’, CEDIGAZ, Rueil Malmaison, 2018.
    65. 65)
      • 59. Schwele, A., Ordoudis, C., Kazempour, J., et al: ‘Coordination of power and natural gas systems: convexification approaches for linepack modeling’. Proc. IEEE PES PowerTech 2019, Milano, Italy, 2019.
    66. 66)
      • 61. Swedish Energy Agency, ‘Energy in Sweden’, 2016.
    67. 67)
      • 62. Dansk Fjernvarme (Danish District Heating association): ‘Statistics about District Heating’, 2017[En ligne]. Available at https://www.danskfjernvarme.dk/english/statistics (accessed November 2018).
    68. 68)
      • 41. ENTSOE: ‘Impact of merit order activation of automatic frequency restoration reserves and harmonised full activation times’, Brussels, 2015.
    69. 69)
      • 11. Yazdani-Damavandi, M., Neyestani, N., Shafie-khah, M., et al: ‘Strategic behavior of multi-energy players in electricity markets as aggregators of demand side resources using a bi-level approach’, IEEE Trans. Power Syst., 2018, 33, pp. 397411.
    70. 70)
      • 69. Arent, D., Arndt, C., Miller, M., et al: ‘The political economy of clean energy transitions’ (Oxford University Press, Oxford, 2017).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-esi.2019.0062
Loading

Related content

content/journals/10.1049/iet-esi.2019.0062
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address