access icon openaccess Operation of supermarket refrigeration units: a coupled district heating and electric network approach

Energy system integration between district heating and electrical domains is required for harvesting potential flexibility arising from sector coupling and support the transition to smart energy systems. This work presents a use case for using excess compressor capacity in refrigeration systems to locally couple district heating and electrical distribution networks by providing heat peak-shaving services to the district heating network. A tool-chain for explicit modelling of the electrical, thermal, and control domain using co-simulation is presented. It is based on a quasi-static electrical load flow model, a dynamic thermal-hydraulic district heating model and dedicated controller simulators integrated into the co-simulation information flow. The use case is implemented using the tool-chain and studied for different peak-shaving services request levels. The result shows that the proposed tool-chain is suitable for studying operational aspects of domain-linking components both at the network and the unit level. It is shown that the refrigeration unit can provide peak-shaving services while satisfying the primary cooling needs. Providing heat peak-shaving services allows distributed feed-in into the district heating network and potential new revenues. However, the refrigeration cycle coefficient of performance decreases as its operation changes from air/air to air/water mode.

Inspec keywords: refrigeration; hydraulic systems; compressors; district heating; load flow; space cooling; power distribution control

Other keywords: district heating network; sector coupling; control domain; controller simulators; harvesting potential flexibility; supermarket refrigeration units; electrical domain; thermal domain; peak-shaving services request levels; primary cooling; energy system integration; compressor capacity; heat peak-shaving services; quasistatic electrical load flow model; electrical distribution networks; domain-linking components; cosimulation information flow; refrigeration systems; tool-chain; coupled district heating; smart energy systems; refrigeration cycle coefficient; dynamic thermal-hydraulic district heating model

Subjects: Distribution networks; Space heating; Control of electric power systems; Control of heat systems; Refrigeration and cooling (energy utilisation); Refrigeration and cold storage; Power system control

References

    1. 1)
      • 16. Carlos, J., Fernández, R.: ‘A novel integrated waste energy recovery system (IWERS) by thermal flows: a supermarket sector case’, Sustain. Prod. Consumpt., 2019, 19, pp. 9097, Available at https://doi.org/10.1016/j.spc.2019.03.010.
    2. 2)
      • 38. Pesendorfer, B., Widl, E., Gawlik, W., et al: ‘Co-simulation and control of power-to-heat units in coupled electrical and thermal distribution networks’. 2018 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems, MSCPES 2018 - Held as part of CPS Week, Proc., Porto, Portugal, 2018, pp. 16.
    3. 3)
      • 2. Lund, H., Werner, S., Wiltshire, R., et al: ‘4th generation district heating (4GDH). integrating smart thermal grids into future sustainable energy systems’. Energy, 2014, 68, pp. 111, Available at http://dx.doi.org/10.1016/j.energy.2014.02.089.
    4. 4)
      • 28. Hägg, R.: ‘Dynamic simulation of district heating networks in dymola’, 2016, ISSN: 0282-1990.
    5. 5)
      • 15. Polzot, A., D'Agaro, P., Gullo, P., et al: ‘Modélisation de systèmes frigorifiques commerciaux couplés à un accumulateur d'eau pour améliorer l'efficacité énergétique et augmenter la performance de récupération de chaleur’, Int. J. Refrig., 2016, 69, pp. 313323, Available at http://dx.doi.org/10.1016/j.ijrefrig.2016.06.012.
    6. 6)
      • 35. Widl, E., Muller, W., Elsheikh, A., et al: ‘The FMI++ library: a high-level utility package for FMI for model exchange’. 2013 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems, MSCPES, Berkeley CA, 2013.
    7. 7)
      • 1. European Commission: ‘Towards an integrated strategic energy technology (SET) plan: accelerating the European energy system transformation EN’, Tech. Report, 2015, pp. 117.
    8. 8)
      • 37. Østergaard, P.A., Andersen, A.N.: ‘Booster heat pumps and central heat pumps in district heating’, Appl. Energy, 2016, 184, pp. 13741388, Available at http://dx.doi.org/10.1016/j.apenergy.2016.02.144.
    9. 9)
      • 26. Modelica Association: ‘Modelica® – a unified object-oriented language for systems modeling language specification version 3.3 revision 1’, 2014, Available at https://www.modelica.org/documents/ModelicaSpec33Revision1.pdf.
    10. 10)
      • 39. District heating close Up. CTR providing the hotline for Frederiksberg, Gentofte, Gladsaxe, Copenhagen and Tarnby’. Tech. Report, CTR CENTRALKOMMUNERNES TRANSMISSIONSSELSKAB I/S, 2014, pp. 120.
    11. 11)
      • 20. Christiansen, A.R., Müller, F., Pina, A., et al: ‘Analysis of possibilities to utilize excess heat of supermarkets as heat source for district heating’, Energy Procedia, 2018, 149, pp. 276285, Available at https://doi.org/10.1016/j.egypro.2018.08.192.
    12. 12)
      • 13. Polzot, A., D'Agaro, P., Cortella, G.: ‘Energy analysis of a transcritical CO2 supermarket refrigeration system with heat recovery’, Energy Procedia, 2017, 111, pp. 648657, Available at http://dx.doi.org/10.1016/j.egypro.2017.03.227.
    13. 13)
      • 44. Velut, S., Tummescheit, H.: ‘Implementation of a transmission line model for fast simulation of fluid flow dynamics’. Proc. 8th Int. Modelica Conf., Technical University, Dresden, Germany, 2011, vol. 63, pp. 446453, Available at https://modelica.org/events/modelica2011/Proceedings/pages/papers/18{_}1{_}ID{_}150{_}a{_}fv.pdf.
    14. 14)
      • 25. Dynasim: ‘Dymola user's manual: version 5.3a’, 2004.
    15. 15)
      • 18. Maidment, G.G., Zhao, X., Ri, S.B., et al: ‘Application of combined heat-and-power and absorption cooling in a supermarket’, Appl. Energy, 1999, 63, (3), pp. 169190.
    16. 16)
      • 4. Averfalk, H., Werner, S.: ‘Essential improvements in future district heating systems’, Energy Procedia, 2017, 116, pp. 217225, Available at: http://dx.doi.org/10.1016/j.egypro.2017.05.069.
    17. 17)
      • 36. Costanzo, G.T., Sossan, F., Marinelli, M., et al: ‘Grey-box modeling for system identification of household refrigerators: a step toward smart appliances’. IYCE 2013 – 4th Int. Youth Conf. on Energy, Hungary, 2013.
    18. 18)
      • 23. Sch, S., Scherfke, S., Sonnenschein, M.: ‘MOSAIK – smart grid simulation API – toward a semantic based standard for interchanging smart grid simulations’, 2012, pp. 1424.
    19. 19)
      • 33. Modelon: ‘Thermal power library’..
    20. 20)
      • 31. Pimentel, T.P.d.C.: ‘District heating systems: case study development using Modelica’, 2015, p. 42.
    21. 21)
      • 41. Gadd, H., Werner, S.: ‘Daily heat load variations in Swedish district heating systems’, Appl. Energy, 2013, 106, pp. 4755, Available at http://dx.doi.org/10.1016/j.apenergy.2013.01.030.
    22. 22)
      • 17. Cecchinato, L., Corradi, M., Minetto, S.: ‘Energy performance of supermarket refrigeration and air conditioning integrated systems’, Appl. Therm. Eng., 2010, 30, (14–15), pp. 19461958, Available at http://dx.doi.org/10.1016/j.applthermaleng.2010.04.019.
    23. 23)
      • 3. Lund, H., Østergaard, P.A., Connolly, D., et al: ‘Smart energy and smart energy systems’, Energy, 2017, 137, pp. 556565, Available at https://doi.org/10.1016/j.energy.2017.05.123.
    24. 24)
      • 42. Love, J., Smith, A.Z., Watson, S., et al: ‘The addition of heat pump electricity load profiles to GB electricity demand: evidence from a heat pump field trial’, Appl. Energy, 2017, 204, pp. 332342, Available at http://dx.doi.org/10.1016/j.apenergy.2017.07.026.
    25. 25)
      • 19. Report, F., Team, R.P., Alliance, R.E., et al: ‘Waste heat recapture from supermarket refrigeration systems prepared by:’, October 2011.
    26. 26)
      • 7. Geidl, M.: ‘Integrated modeling and optimization of multi-carrier energy systems’, 2007, 17141, p. 143, Available at http://e-collection.library.ethz.ch/eserv/eth:29506/eth-29506-02.pdf.
    27. 27)
      • 8. van Beuzekom, I., Gibescu, M., Slootweg, J.: ‘A review of multi-energy system planning and optimization tools for sustainable urban development’. 2015 IEEE Eindhoven PowerTech, Eindhoven, 2015, pp. 17, Available at http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7232360.
    28. 28)
      • 29. Giraud, L., Baviere, R., Vallée, M., et al: ‘Presentation, validation and application of the DistrictHeating Modelica library’, 2015, pp. 7988, Available at http://www.ep.liu.se/ecp{_}article/index.en.aspx?issue=118;article=8.
    29. 29)
      • 30. Pimentel, T.P.C., Hensen, J.L.M., Torrenz, J.I., et al: ‘District heating systems: case study development using Modelica’. Bachelor/Master thesis, Faculty of Sciences of the University of Lisbon (Faculdade de Ciências da Universidade de Lisboa), 2014, 2, pp. 113.
    30. 30)
      • 14. Polzot, A., Dipasquale, C., D'Agaro, P., et al: ‘Energy benefit assessment of a water loop heat pump system integrated with a CO2 commercial refrigeration unit’, Energy Procedia, 2017, 123, pp. 3645, Available at http://dx.doi.org/10.1016/j.egypro.2017.07.282.
    31. 31)
      • 5. Steam, S., New, F.U.: ‘District energy – energy efficiency for urban areas’, 2011.
    32. 32)
      • 10. Leitner, B., Widl, E., Gawlik, W., et al: ‘A method for technical assessment of power-to-heat use cases to couple local district heating and electrical distribution grids’, Energy, 2019, 182, pp. 729738, Available at: https://linkinghub.elsevier.com/retrieve/pii/S0360544219311399.
    33. 33)
      • 32. del Hoyo Arce, I., Herrero López, S., López Perez, S., et al: ‘Models for fast modelling of district heating and cooling networks’, Renew. Sustain. Energy Rev., 2018, 82, pp. 18631873, Available at https://doi.org/10.1016/j.rser.2017.06.109.
    34. 34)
      • 9. Allegrini, J., Orehounig, K., Mavromatidis, G., et al: ‘A review of modelling approaches and tools for the simulation of district-scale energy systems’, Renew. Sustain. Energy Rev., 2015, 52, pp. 13911404, Available at: http://dx.doi.org/10.1016/j.rser.2015.07.123.
    35. 35)
      • 27. Soons, F.F.M., Torrens, J.I., Hensen, J.L.M., et al: ‘A Modelica based computational model for evaluating a renewable district heating system’. SSB2014, 9th Int. Conf. on System Simulation in Buildings, Liege, Belgium, 2014, vol. 2, no. 1, pp. 116.
    36. 36)
      • 43. van der Heijde, B., Fuchs, M., Ribas Tugores, C., et al: ‘Dynamic equation-based thermo-hydraulic pipe model for district heating and cooling systems’, Energy Convers. Manage., 2017, 151, pp. 158169, Available at: http://dx.doi.org/10.1016/j.enconman.2017.08.072.
    37. 37)
      • 11. Mota-Babiloni, A., Navarro-Esbrí, J., Barragán-Cervera, Á., et al: ‘Commercial refrigeration – an overview of current status’, Int. J. Refrig., 2015, 57, pp. 186196.
    38. 38)
      • 24. Thurner, L., Scheidler, A., Schäfer, F., et al: ‘Pandapower – an open source python tool for convenient modeling, analysis and optimization of electric power systems’, 2017, pp. 112, Available at http://arxiv.org/abs/1709.06743.
    39. 39)
      • 6. Mancarella, P.: ‘MES (multi-energy systems): an overview of concepts and evaluation models’, Energy, 2014, 65, pp. 117, Available at http://dx.doi.org/10.1016/j.energy.2013.10.041.
    40. 40)
      • 22. Palensky, P., Member, S., Meer, A.A.V.D., et al: ‘Applied co-simulation of intelligent power systems: implementation, usage, examples’.
    41. 41)
      • 12. Lund, R., Persson, U.: ‘Mapping of potential heat sources for heat pumps for district heating in Denmark’, Energy, 2016, 110, pp. 129138, Available at http//dx.doi.org/10.1016/j.energy.2015.12.127.
    42. 42)
      • 40. Pirouti, M., Bagdanavicius, A., Ekanayake, J., et al: ‘Energy consumption and economic analyses of a district heating network’, Energy, 2013, 57, pp. 149159, Available at http://dx.doi.org/10.1016/j.energy.2013.01.065.
    43. 43)
      • 21. Id, P., Palaiseau, P.: ‘Heat recovery from CO2 refrigeration system in supermarkets to district heating network’, 2018, 5, pp. 18.
    44. 44)
      • 34. Blochwitz, T., Otter, M., Arnold, M., et al: ‘The functional mockup interface for tool independent exchange of simulation models’. Proc. 8th Int. Modelica Conf., Technical University, Dresden, Germany, 2011, vol. 63, pp. 105114.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-esi.2019.0059
Loading

Related content

content/journals/10.1049/iet-esi.2019.0059
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading