access icon openaccess Sizing of renewable energy based hybrid system for rural electrification using grey wolf optimisation approach

The utilisation of renewable energy sources (RES) in increasing drastically because of various issues including depletion of fossil fuels, greenhouse gas emissions, climate change and so on. As the power generated from RES is fluctuating in nature, therefore, the appropriate sizing of the hybrid model based on RES is utmost important. In this study, the grey wolf optimisation, a newly developed approach is used for the optimal sizing of the hybrid model. In this work, the optimal design of solar/biomass/biogas/battery-based hybrid system has been carried out to supply continuous electricity to various households of a cluster of villages of Haryana state of India. The results obtained from the proposed model have been compared with harmony search and particle swarm optimisation and found better.

Inspec keywords: hybrid power systems; particle swarm optimisation; biofuel; photovoltaic power systems; renewable energy sources; optimisation; fossil fuels; battery storage plants

Other keywords: hybrid model; RES; utilisation; solar/biomass/biogas/battery-based hybrid system; climate change; greenhouse gas emissions; renewable energy sources; appropriate sizing; particle swarm optimisation; rural electrification; fossil fuels; newly developed approach; grey wolf optimisation approach; optimal sizing; issues including depletion; optimal design; harmony search

Subjects: Pollution detection and control; Other power stations and plants; Solar power stations and photovoltaic power systems; Optimisation techniques; Power system management, operation and economics; Energy resources; Optimisation techniques

References

    1. 1)
      • 56. Mirjalili, S., Mirjalili, S.M., Lewis, A.: ‘Grey wolf optimizer’, Adv. Eng. Softw., 2014, 69, pp. 4661.
    2. 2)
      • 31. Rehman, S., Al-Hadhrami, L.M.: ‘Study of a solar PV/diesel/battery hybrid power system for a remotely located population near Rafha, Saudi Arabia’, Energy, 2010, 35, (12), pp. 49864995.
    3. 3)
      • 33. Asrari, A., Ghasemi, A., Javidi, H.M.: ‘Economic evaluation of hybrid renewable energy systems for rural electrification in Iran – a case study’, Renew. Sustain. Energy Rev., 2012, 16, (5), pp. 31233130.
    4. 4)
      • 1. Khare, V., Nema, S., Baredar, P.: ‘Status of solar wind renewable energy in India’, Renew. Sustain. Energy Rev., 2013, 27, pp. 110.
    5. 5)
      • 10. Lal, D.K., Dash, B.B., Akella, A.: ‘Optimization of PV/wind/ micro-hydro/diesel hybrid power system in homer for the study area’, Inte. J. Electr. Eng. Inf., 2011, 3, (3), pp. 307325.
    6. 6)
      • 15. Al-Ashwal, A.M., Moghram, I.S.: ‘Proportion assessment of combined PV/wind generating systems’, Renew. Energy, 1997, 10, (1), pp. 4351.
    7. 7)
      • 12. Markvart, T., Fragaki, A., Ross, J.: ‘PV system sizing using observed time series of solar radiation’, Sol. Energy, 2006, 80, (1), pp. 4650.
    8. 8)
      • 6. Shaahid, S.M., Elhadidy, M.A.: ‘Economic analysis of hybrid photovoltaic–diesel– battery power systems for residential loads in hot regions-a step to clean future’, Renew. Sustain. Energy Rev., 2008, 12, pp. 488503.
    9. 9)
      • 23. Zhang, X., Tan, S.C., Li, G., et al: ‘Components sizing of hybrid energy systems via the optimization of power dispatch simulations’, Energy, 2013, 52, pp. 165172.
    10. 10)
      • 30. Phuangpornpitak, N., Kumar, S.: ‘PV hybrid systems for rural electrification in Thailand’, Renew. Sustain. Energy Rev., 2007, 11, pp. 15301543.
    11. 11)
      • 9. Balamurugana, P., Ashok, S., Jose, T.L.: ‘Optimal operation of biomass/wind/PV hybrid energy system for rural areas’, Int. J. Green Energy, 2009, 6, (1), pp. 104116.
    12. 12)
      • 45. Maleki, A., Askarzadeh, A.: ‘Comparative study of artificial intelligence techniques for sizing of a hydrogen-based stand-alone photovoltaic/wind hybrid system’, Int. J. Hydrog. Energy, 2014, 39, pp. 99739984.
    13. 13)
      • 37. Mostofi, F., Shayeghi, H.: ‘Feasibility and optimal reliable design of renewable hybrid energy system for rural electrification in Iran’, Int. J. Renew. Energy Res., 2012, 2, (4), pp. 574582.
    14. 14)
      • 52. Zebarjadi, M., Askarzadeh, A.: ‘Optimization of a reliable grid-connected PV-based power plant with/without energy storage system by a heuristic approach’, Sol. Energy, 2016, 125, pp. 1221.
    15. 15)
      • 60. Kamboj, V.K.., Bath, S.K., Dhillon, J. S.: ‘Solution of non-convex economic load dispatch problem using grey wolf optimizer’, Neural Comput. Appl., 2016, 27, (5), pp. 13011316.
    16. 16)
      • 14. Bagul, A., Salameh, Z., Borowy, B.: ‘Sizing of a stand-alone hybrid wind-photovoltaic system using a three-event probability density approximation’, Sol. Energy, 1996, 56, (4), pp. 323335.
    17. 17)
      • 38. Koutroulis, E., Kolokotsa, D.: ‘Design optimization of desalination systems power supplied by PV and W/G energy sources’, Desalination, 2010, 258, (1–3), pp. 171181.
    18. 18)
      • 2. Dufo, L.R., Bernal, A.J.L., Contreras, J.: ‘Optimization of control strategies for stand-alone renewable energy systems with hydrogen storage’, Renew. Energy, 2007, 32, (7), pp. 11021126.
    19. 19)
      • 19. Kellogg, W., Nehrir, M., Venkataramanan, G., et al: ‘Generation unit sizing and cost analysis for stand-alone wind, photovoltaic, and hybrid wind/PV systems’, IEEE Trans. Energy Convers., 1998, 13, (1), pp. 7075.
    20. 20)
      • 48. Upadhyay, S., Sharma, M.P.: ‘Development of hybrid energy system with cycle charging strategy using particle swarm optimization for a remote area in India’, Renew. Energy, 2015, 77, pp. 586598.
    21. 21)
      • 17. Tina, G., Gagliano, S., Raiti, S.: ‘Hybrid solar/wind power system probabilistic modelling for long-term performance assessment’, Sol. Energy, 2006, 80, (5), pp. 578588.
    22. 22)
      • 25. Chauhan, A., Saini, R.P.: ‘Discrete harmony search based size optimization of integrated renewable energy system for remote rural areas of Uttarakhand state in India’, Renew. Energy, 2016, 94, pp. 587604.
    23. 23)
      • 46. Maleki, A., Ameri, M., Keynia, F.: ‘Scrutiny of multifarious particle swarm optimization for finding the optimal size of a PV/wind/battery hybrid system’, Renew. Energy, 2015, 80, pp. 552563.
    24. 24)
      • 28. Abdullaha, M.O., Yunga, V.C., Anyia, M., et al: ‘Review and comparison study of hybrid diesel/solar/hydro/fuel cell energy schemes for a rural ICT telecenter’, Energy, 2010, 35, pp. 639646.
    25. 25)
      • 36. Bala, B.K., Siddique, S.A.: ‘Optimal design of a PV-diesel hybrid system for electrification of an isolated island Sandwip in Bangladesh using genetic algorithm’, Energy Sustain. Dev., 2009, 13, pp. 137142.
    26. 26)
      • 4. McGowan, J.G., Manwell, J.F., Avelar, C., et al: ‘Hybrid wind/PV/diesel hybrid power systems modelling and South American applications’, Renew. Energy, 1996, 9, (1–4), pp. 836847.
    27. 27)
      • 57. Description of Sonipat district. Available at http://www.sonipat.nic.in/, accessed 01 November 2018.
    28. 28)
      • 49. Upadhyay, S., Sharma, M.P.: ‘Selection of a suitable energy management strategy for a hybrid energy system in a remote rural area of India’, Energy, 2016, 94, pp. 352366.
    29. 29)
      • 43. Tégani, I., Aboubou, A., Ayad, M.Y., et al: ‘Optimal sizing design and energy management of stand-alone photovoltaic/wind generator systems’, Energy Proc., 2014, 50, pp. 163170.
    30. 30)
      • 42. Abdullrahman, A.A.S, Addoweesh, K.E.: ‘Optimum sizing of hybrid PV/wind/ battery/diesel system considering wind turbine parameters using genetic algorithm’, Proc. IEEE Int. Conf. Power and Energy (PECon), Kota Kinabalu, Malaysia, December 2012, pp. 121126.
    31. 31)
      • 59. Anand, P., Bath, S.K., Rizwan, M.: ‘Renewable energy-based hybrid model for rural electrification’, Int. J. Energy Technol. Policy, 2019, 15, (1), pp. 86113.
    32. 32)
      • 47. Chauhan, A., Saini, R.P.: ‘Size optimization and demand response of a stand-alone integrated renewable energy system’, Energy, 2017, 124, pp. 5973.
    33. 33)
      • 51. González, A., Riba, J.R., Rius, A., et al: ‘Optimal sizing of a hybrid grid-connected photovoltaic and wind power system’, Appl. Energy, 2015, 154, pp. 752762.
    34. 34)
      • 18. Lujano-Rojas, J.M., Dufo-López, R., Bernal-Agustín, J.L.: ‘Probabilistic modelling and analysis of stand-alone hybrid power systems’, Energy, 2013, 63, pp. 1927.
    35. 35)
      • 35. Padrón, I., Deivis, A., Graciliano, N., et al: ‘Assessment of hybrid renewable energy systems to supplied energy to autonomous desalination systems in two islands of the Canary archipelago’, Renew. Sustain. Energy Rev., 2019, 101, pp. 221230.
    36. 36)
      • 55. Abdelshafya, A.M., Hassana, H., Jakub, J.: ‘Optimal design of a grid-connected desalination plant powered by renewable energy resources using a hybrid PSO–GWO approach’, Energy Convers. Manage., 2018, 173, pp. 331347.
    37. 37)
      • 5. Shaahid, S.M., Elhadidy, M.A.: ‘Technical and economic assessment of grid-independent hybrid photovoltaic–diesel–battery power systems for commercial loads in desert environments’, Renew. Sustain. Energy Rev., 2007, 11, (8), pp. 17941810.
    38. 38)
      • 21. Ekren, B.Y., Ekren, O.: ‘Simulation based size optimization of a PV/wind hybrid energy conversion system with battery storage under various load and auxiliary energy conditions’, Appl. Energy, 2009, 86, (9), pp. 13871394.
    39. 39)
      • 39. Yang, H., Zhou, W., Lu, L.: ‘Optimal sizing method for stand-alone hybrid solar–wind system with LPSP technology by using genetic algorithm’, Sol. Energy, 2008, 82, (4), pp. 354367.
    40. 40)
      • 13. De, A.R., Musgrove, L.: ‘The optimization of hybrid energy conversion systems using the dynamic programming model-Rapsody’, Int. J. Energy Res., 1988, 12, (3), pp. 447457.
    41. 41)
      • 34. Bhattacharjee, S., Dey, A.: ‘Techno-economic performance evaluation of grid integrated PV-biomass hybrid power generation for rice mill’, Sustain. Energy Technol. Assess, 2014, 7, pp. 616.
    42. 42)
      • 20. Prasad, A.R., Natarajan, E.: ‘Optimization of integrated photovoltaic–wind power generation systems with battery storage’, Energy, 2006, 31, pp. 19431954.
    43. 43)
      • 54. Sawle, Y., Gupta, S.C., Bohre, A.K.: ‘Socio-techno-economic design of hybrid renewable energy system using optimization techniques’, Renew. Energy, 2018, 119, pp. 459472.
    44. 44)
      • 32. Shahzad, M.K., Zahid, A., Rashid, T.U., et al: ‘Techno-economic feasibility analysis of a solar-biomass off-grid system for the electrification of remote rural areas in Pakistan using HOMER software’, Renew. Energy, 2017, 106, pp. 264273.
    45. 45)
      • 29. Nouni, M.R., Mullick, S.C., Kandpal, T.C.: ‘Providing electricity access to remote areas in India: niche areas for decentralized electricity supply’, Renew. Energy, 2009, 34, (2), pp. 430444.
    46. 46)
      • 53. Mohamed, M.A., Eltamaly, A.M., Alolah, A.I.: ‘Swarm intelligence-based optimization of grid-dependent hybrid renewable energy systems’, Renew. Sustain. Energy Rev., 2017, 77, pp. 515524.
    47. 47)
      • 44. Pirhaghshenasvali, M., Asaei, B.: ‘Optimal modeling and sizing of a practical hybrid wind/PV/diesel generation system’. Proc. of the Fifth Power Electronics, Drive Systems and Technologies Conf. (PEDSTC), Tehran, Iran, 2014, pp. 506511.
    48. 48)
      • 26. Heydari, A., Askarzadeh, A.: ‘Optimization of a biomass-based photovoltaic power plant for an off-grid application subject to loss of power supply probability concept’, Appl. Energy, 2016, 165, pp. 601611.
    49. 49)
      • 22. Li, J., Wei, W., Xiang, J.: ‘A simple sizing algorithm for stand-alone PV/wind/battery hybrid micro grids’, Energies, 2012, 5, (12), pp. 53075323.
    50. 50)
      • 24. Askarzadeh, A.: ‘Developing a discrete harmony search algorithm for size optimization of wind/photovoltaic hybrid energy system’, Sol. Energy, 2013, 98, pp. 190195.
    51. 51)
      • 58. http://www.mapsofindia.com/lat_long/haryana/, accessed 01 November 2018.
    52. 52)
      • 40. Yang, H., Zhou, W., Lou, C.: ‘Optimal design and techno-economic analysis of a hybrid solar–wind power generation system’, Appl. Energy, 2009, 86, (2), pp. 163169.
    53. 53)
      • 27. Rajanna, S., Saini, R.P.: ‘Development of optimal integrated renewable energy model with battery storage for a remote Indian area’, Energy, 2016, 111, pp. 803817.
    54. 54)
      • 41. Nafeh, A.E.S.A.A.: ‘Optimal economical sizing of a PV–wind hybrid energy system using genetic algorithm’, Int. J. Green Energy, 2011, 8, pp. 2543.
    55. 55)
      • 7. Dalton, G.J., Lockington, D.A, Baldock, T.E.: ‘Feasibility analysis of stand-alone renewable energy supply options for a large hotel’, Renew. Energy, 2008, 33, (7), pp. 14751490.
    56. 56)
      • 16. Karaki, S., Chedid, R., Ramadan, R.: ‘Probabilistic performance assessment of autonomous solar-wind energy conversion systems’, IEEE Trans. Energy Convers., 1999, 14, (3), pp. 766772.
    57. 57)
      • 3. Abedi, S., Alimardani, A., Gharehpetian, G.B., et al: ‘A comprehensive method for optimal power management and design of hybrid RES-based autonomous energy systems’, Renew. Sustain. Energy Rev., 2012, 16, (3), pp. 15771587.
    58. 58)
      • 50. Singh, S., Singh, M., Kaushik, S.C.: ‘Optimal sizing of grid integrated hybrid PV-biomass energy system using artificial bee colony algorithm’, IET Renew. Power Gener., 2016, 10, (5), pp. 642650.
    59. 59)
      • 11. Borowy, B.S., Salameh, Z.M.: ‘Methodology for optimally sizing the combination of a battery bank and PV array in a wind/ PV hybrid system’, IEEE Trans. Energy Convers., 1996, 11, (2), pp. 367375.
    60. 60)
      • 8. Kenfack, J., François, P.N., Thomas, T.T., et al: ‘Micro hydro-PV hybrid system: sizing a small hydro-PV-hybrid system for rural electrification in developing countries’, Renew. Energy, 2009, 34, pp. 22592263.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-esi.2018.0053
Loading

Related content

content/journals/10.1049/iet-esi.2018.0053
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading