Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free System-level optimal design process of inverter-fed BLAC motor used for 12–48 V integrated electric brake system

In this study, to maximise the performance and efficiency of 48 V integrated electric brake (IEB) system, a system-level optimal design process is proposed for inverter-driven brushless AC (BLAC) motor, taking into account the available input voltage that varies depending on the motor operating conditions. To get available input voltages, the voltage drops of battery wiring and inverter are reversely calculated from the motor output power. In the optimal design process, the resistance components in the inverter are separated into DC and AC parts, and these are analysed by including the dq equivalent circuit for motor analysis. The battery currents are obtained using the calculated maximum output performance and the loss between the battery and inverter. The proposed design process is applied to the optimal design of the 48 V motor for IEB systems. Also, to reduce the development cost of the 48 V motor, the manufacturing tools of the previously developed 12 V motor are shared. As an optimal design results, it is confirmed that there is an efficiency improvement effect of ∼5% compared to the conventional design of 12–48 V BLAC motor.

References

    1. 1)
      • 15. Kim, M.J., Kim, B.K., Moon, J.W., et al: ‘Analysis of inverter-fed squirrel-cage induction motor during eccentric rotor motion using FEM’, IEEE Trans. Magn., 2017, 44, (6), pp. 15381541.
    2. 2)
      • 3. Lim, J., Jeong, J.H., Kim, C.H., et al: ‘Analysis and experimental evaluation of normal force of linear induction motor for maglev vehicle’, IEEE Trans. Magn., 2017, 53, (11), p. 8300504.
    3. 3)
      • 11. Fang, L., Jung, J.W., Hong, J.P., et al: ‘Study on high-efficiency performance in interior permanent-magnet synchronous motor with double-layer PM design’, IEEE Trans. Magn., 2008, 44, (11), pp. 43934396.
    4. 4)
      • 23. Hwang, K.Y., Song, B.K., Kwon, B.I.: ‘Asymmetric dual winding three-phase PMSM for fault tolerance of overheat in electric braking system of autonomous vehicle’, IET Electr. Power Appl., 2019, 13, (12), pp. 18911898.
    5. 5)
      • 6. Seong, J., Park, S., Kim, M.K., et al: ‘DBC-packaged inverter power module for integrated motor-inverter design used in 48 V mild hybrid starter-generator (MHSG) system’, IEEE Trans. Veh. Technol., 2019, 68, (12), pp. 1170411713.
    6. 6)
      • 25. Liu, Y., Zhou, Y., Qu, D., et al: ‘Electric oil pump design of hybrid continuously variable transmission’, IET Electr. Power Appl., 2019, 13, (8), pp. 10891096.
    7. 7)
      • 28. Novotny, D.W., Lipo, T.A.: ‘Vector control and dynamics of AC drives’ (Oxford University Press Inc., New York, 1996).
    8. 8)
      • 10. Kim, S.I., Cho, J.W., Park, S.H., et al: ‘Characteristics comparison of a conventional and modified spoke-type ferrite magnet motor for traction drives of low-speed electric vehicles’, IEEE Trans. Ind. Appl., 2013, 49, (6), pp. 25162523.
    9. 9)
      • 29. Mathe, L., Lungeanu, F., Sera, D., et al: ‘Spread spectrum modulation by using asymmetric-carrier random PWM’, IEEE Trans. Ind. Electron., 2012, 59, (10), pp. 37103718.
    10. 10)
      • 16. Meng, X., Wang, S., Qiu, J., et al: ‘Dynamic multilevel optimization of machine design and control parameters based on correlation analysis’, IEEE Trans. Magn., 2010, 46, (8), pp. 27792782.
    11. 11)
      • 12. Lee, B.H., Kwon, S.O., Son, T., et al: ‘Modeling of core loss resistance for - equivalent circuit analysis of IPMSM considering harmonic linkage flux’, IEEE Trans. Magn., 2011, 47, (5), pp. 10661069.
    12. 12)
      • 1. Carraro, E., Morandin, M., Bianchi, N.: ‘Traction PMASR motor optimization according to a given driving cycle’, IEEE Trans. Ind. Appl., 2016, 52, (1), pp. 209216.
    13. 13)
      • 4. Nazari, S., Siegel, J., Stefanopoulou, A.: ‘Optimal energy management for a mild hybrid vehicle with electric and hybrid engine boosting systems’, IEEE Trans. Veh. Technol., 2014, 68, (4), pp. 33863399.
    14. 14)
      • 22. Fatemi, A., Nehl, T.W., Yang, X., et al: ‘Design optimization of an electric machine for a 48-V hybrid vehicle with comparison of rotor technologies and pole-slot combinations’, IEEE Trans. Ind. Appl., 2020, 56, (5), pp. 46094622.
    15. 15)
      • 21. Song, B.K., Kim, D.K., Kim, S.I., et al: ‘Comparative study on surface-mounted permanent magnet motors with segmented and connected core for brake system’, IEEE Access, 2020, 6, pp. 167930167938.
    16. 16)
      • 18. Ghorbanian, V., Salimi, A., Lowther, D.A.: ‘A computer-aided design process for optimizing the size of inverter-fed permanent magnet motors’, IEEE Trans. Ind. Electron., 2018, 65, (2), pp. 18191827.
    17. 17)
      • 5. Boldea, I., Tutelea, L., Pitic, C.I.: ‘PM-Assisted reluctance synchronous motor/generator (PM-RSM) for mild hybrid vehicles: electromagnetic design’, IEEE Trans. Ind. Appl., 2004, 40, (2), pp. 492498.
    18. 18)
      • 8. Bojoi, R., Cavagnino, A., Cossale, M., et al: ‘Multiphase starter generator for a 48-V mini-hybrid powertrain: design and testing’, IEEE Trans. Ind. Appl., 2016, 52, (2), pp. 17501758.
    19. 19)
      • 7. Cavagnino, A., Tenconi, A., Vaschetto, S.: ‘Experimental characterization of a belt-driven multiphase induction machine for 48-V automotive applications: losses and temperatures assessments’, IEEE Trans. Ind. Appl., 2016, 52, (2), pp. 13211330.
    20. 20)
      • 2. Jung, H.C., Park, G.J., Kim, D.J., et al: ‘Optimal design and validation of ipmsm for maximum efficiency distribution compatible to energy consumption areas of HD-EV’, IEEE Trans. Magn., 2017, 53, (6), p. 8201904.
    21. 21)
      • 27. Hong, G., Wei, T., Ding, X.: ‘Multi-objective optimal design of permanent magnet synchronous motor for high efficiency and high dynamic performance’, IEEE Access, 2018, 6, pp. 2356823581.
    22. 22)
      • 17. Ghorbanian, V., Lowther, D.A.: ‘A statistical solution to efficiently optimize the design of an inverter-fed permanent-magnet motor’, IEEE Trans. Ind. Appl., 2017, 53, (6), pp. 53155326.
    23. 23)
      • 26. Wu, J., Wang, J., Gan, C., et al: ‘Efficiency optimization of PMSM drives using field-circuit coupled FEM for EV/HEV applications a computer-aided design process for optimizing the size of inverter-fed permanent magnet motors’, IEEE Access, 2018, 6, pp. 1519215201.
    24. 24)
      • 19. Xu, J., Zhang, B., Kuang, X., et al: ‘Influence analysis of slot parameters and high torque density optimisation for dual redundant permanent magnet motor in aerospace application’, IET Electr. Power Appl., 2020, 14, (7), pp. 12631273.
    25. 25)
      • 14. Praveen, K.N., Isah, T.B.: ‘FEM based electromagnetic signature analysis of winding inter-turn short-circuit fault in inverter fed induction motor’, CES Trans. Electr. Mach. Syst., 2019, 3, (3), pp. 309315.
    26. 26)
      • 9. Heffernan, D., MacNamee, C., Fogarty, P.: ‘Runtime verification monitoring for automotive embedded systems using the ISO 26262 functional safety standard as a guide for the definition of the monitored properties’, IET Softw., 2014, 8, (5), pp. 193203.
    27. 27)
      • 13. Reddy, B.P., Rao, A.M., Sahoo, M., et al: ‘A fault-tolerant multilevel inverter for improving the performance of a pole–phase modulated nine-phase induction motor drive’, IEEE Trans. Ind. Electron., 2018, 65, (2), pp. 11071116.
    28. 28)
      • 24. Zhang, Z., Wang, C., Zhou, M., et al: ‘Flux-weakening in PMSM drives: analysis of voltage angle control and the single current controller design’, IEEE J. Emerging Sel. Topics Power Electron., 2019, 7, (1), pp. 437445.
    29. 29)
      • 20. Cui, J., Xiao, W., Zou, W., et al: ‘Design optimisation of submersible permanent magnet synchronous motor by combined DOE and taguchi approach’, IET Electr. Power Appl., 2020, 14, (6), pp. 10601066.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2020.0551
Loading

Related content

content/journals/10.1049/iet-epa.2020.0551
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address