access icon free Verification of effect of secondary conductor bar on starting characteristics in line-start type self-excited wound-field synchronous motor

This study clarifies experimentally the effect of the secondary conductor bar on line-start characteristics in a line-start type self-excited wound-field synchronous motor. This motor is based on a brushless wound-field synchronous motor having a rotor winding connected to a diode rectifier circuit. And it has a secondary conductor bar that is independently connected at a pitch of one pole, without end-ring. First, the operation principle of the proposed motor and its magnetic circuit design are described, and then the details of the prototype for principle verification are clarified. Next, when the combination of the connecting of the secondary conductor bar is changed, an experiment of line-starting characteristics and measured rotor field current is demonstrated. Consequently, it was clarified that the influence on the synchronous pull-in, speed ripple, and rotor field current.

Inspec keywords: finite element analysis; magnetic circuits; stators; synchronous motors; rotors; rectifying circuits

Other keywords: line-start characteristics; line-starting characteristics; brushless wound-field synchronous motor; line-start type self-excited wound-field synchronous motor; secondary conductor bar

Subjects: Finite element analysis; Synchronous machines; Control of electric power systems

References

    1. 1)
      • 4. Yan, B., Wang, X., Yang, Y.: ‘Parameters determination and dynamic modelling of line-start permanent-magnet synchronous motor with a composite solid rotor’, IET Electr. Power Appl., 2019, 13, (1), pp. 1723.
    2. 2)
      • 14. Villani, M., Santececca, M., Parasiliti, F.: ‘High-efficiency line-start synchronous reluctance motor for fan and pump applications’. 2018 XIII Int. Conf. on Electrical Machines (ICEM), Alexandroupoli, 2018, pp. 21782184.
    3. 3)
      • 30. Aoyama, M., Noguchi, T.: ‘Permanent-magnet-free-synchronous motor with self-excited wound-field technique utilizing space harmonics’. 2017 IEEE Applied Power Electronics Conf. and Exposition (APEC), Tampa, FL, 2017, pp. 31873194.
    4. 4)
      • 22. Aoyama, M., Mizuta, T., Miyama, Y., et al: ‘Proposal and experimental verification of line-start self-excited wound-field motor with concentrated winding stator’. IEE Japan Annual Conf. 2020, Tokyo, March 13rd, 2020, 50058, pp. 8889(in Japanese).
    5. 5)
      • 28. Chakraborty, C., Rao, Y.T.: ‘Performance of brushless induction excited synchronous generator’, IEEE J. Emerg. Sel. Top. Power Electron., 2019, 7, (4), pp. 25712582.
    6. 6)
      • 20. Aliabad, A.D., Ghoroghchian, F.: ‘Design and analysis of a two-speed line start synchronous motor: scheme one’, IEEE Trans. Energy Convers., 2016, 31, (1), pp. 366372.
    7. 7)
      • 15. Mingardi, D., Bianchi, N.: ‘Line-start PM-assisted synchronous motor design, optimization, and tests’, IEEE Trans. Ind. Electron., 2017, 64, (12), pp. 97399747.
    8. 8)
      • 18. Shehata, E.G.: ‘Design tradeoffs between starting and steady state performances of line-started interior permanent magnet synchronous motor’. 7th IET Int. Conf. on Power Electronics, Machines and Drives (PEMD 2014), Manchester, 2014, pp. 16.
    9. 9)
      • 2. Ugale, R.T.: ‘Overview of research evolution in the field of line start permanent magnet synchronous motors’, IET Electr. Power Appl., 2013, 8, (4), pp. 141154.
    10. 10)
      • 9. Jędryczka, C., Knypiński, Ł, Demenko, A., et al: ‘Methodology for cage shape optimization of a permanent magnet synchronous motor under line start conditions’, IEEE Trans. Magn., 2018, 54, (3), pp. 14.
    11. 11)
      • 25. Nøland, J.K., Evestedt, F., Lundin, U.: ‘Failure modes demonstration and redundant postfault operation of rotating thyristor rectifiers on brushless dual-star exciters’, IEEE Trans. Ind. Electron., 2019, 66, (2), pp. 842851.
    12. 12)
      • 21. Negahdari, A., Sundaram, V.M., Toliyat, H.A.: ‘An analytical approach for determining harmonic cusps and torque dips in line start synchronous reluctance motors’. 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, 2016, pp. 16.
    13. 13)
      • 12. Ustun, O., Bayram, D., Durak, B., et al: ‘Comparison of different line start interior permanent magnet synchronous motor types with respect to IE4 efficiency class’. 2017 18th Int. Symp. on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF), Lodz, Poland, Sep. 14–16, 2017, pp. 12.
    14. 14)
      • 27. Rao, Y.T., Chakraborty, C., Basak, S.: ‘Brushless induction excited synchronous generator with induction machine operating in plugging mode’, IEEE Trans. Ind. Appl., 2018, 54, (6), pp. 57485759.
    15. 15)
      • 16. Liu, H., Lee, J.: ‘Optimum design of an IE4 line-start synchronous reluctance motor considering manufacturing process loss effect’, IEEE Trans. Ind. Electron., 2018, 65, (4), pp. 31043114.
    16. 16)
      • 1. Boldea, I.: ‘Electric generators and motors: an overview’, CES Trans. Electr. Mach. Syst., 2017, 1, (1), pp. 314.
    17. 17)
      • 11. Lin, M., Li, D., Ren, X., et al: ‘Dual-stator line-start Vernier permanent magnet synchronous machine’. 2019 IEEE Int. Electric Machines & Drives Conf. (IEMDC), San Diego, CA, USA, 2019, pp. 22392244.
    18. 18)
      • 3. Ugale, R.T., Chaudhari, B.N.: ‘Rotor configurations for improved starting and synchronous performance of line start permanent-magnet synchronous motor’, IEEE Trans. Ind. Electron., 2017, 64, (1), pp. 138148.
    19. 19)
      • 6. Lin, M., Li, D., Zhao, Y., et al: ‘Improvement of starting performance for line-start permanent magnet motors by winding reconfiguration’, IEEE Trans. Ind. Appl., 2020, 56, (3), pp. 24412450.
    20. 20)
      • 23. Nøland, J.K., Evestedt, F., Pérez-Loya, J.J., et al: ‘Design and characterization of a rotating brushless outer pole PM exciter for a synchronous generator’, IEEE Trans. Ind. Appl., 2017, 53, (3), pp. 20162027.
    21. 21)
      • 8. Tian, M., Wang, X., Wang, D., et al: ‘A novel line-start permanent magnet synchronous motor with 6/8 pole changing winding’, IET Trans. Energy Convers., 2018, 33, (3), pp. 11641174.
    22. 22)
      • 24. Nøland, J.K., Evestedt, F., Pérez-Loya, J.J., et al: ‘Comparison of thyristor rectifier configurations for a six-phase rotating brushless outer pole PM exciter’, IEEE Trans. Ind. Electron., 2018, 65, (2), pp. 968976.
    23. 23)
      • 13. Poudel, B., Amiri, E., Rastgoufard, P.: ‘Design and analysis of line start synchronous reluctance motor with dual saliency’. 2018 IEEE Transportation Electrification Conf. and Expo (ITEC), Long Beach, CA, 2018, pp. 385388.
    24. 24)
      • 7. Takahashi, A., Kikuchi, S., Miyata, K., et al: ‘Asynchronous torque of line-starting permanent-magnet synchronous motors’, IEEE Trans. Energy Convers., 2015, 30, (2), pp. 498506.
    25. 25)
      • 29. Bukhari, S.S.H., Sirewal, G.J., Ayub, M., et al: ‘A new small-scale self-excited wound rotor synchronous motor topology’, IEEE Trans. Magn., 2021, 57, pp. 15 (Early Access).
    26. 26)
      • 19. Mingardi, D., Bianchi, N., Prè, M.D.: ‘Geometry of line start synchronous motors suitable for various pole combinations’, IEEE Trans. Ind. Appl., 2017, 53, (5), pp. 43604367.
    27. 27)
      • 26. Mi, C., Filippa, M., Shen, J., et al: ‘Modeling and control of a variable-speed constant-frequency synchronous generator with brushless exciter’, IEEE Trans. Ind. Appl., 2004, 40, (2), pp. 565573.
    28. 28)
      • 17. Castagnini, A., Känsäkangas, T., Kolehmainen, J., et al: ‘Analysis of the starting transient of a synchronous reluctance motor for direct-on-line applications’. 2015 IEEE Int. Electric Machines & Drives Conf. (IEMDC), Coeur d'Alene, ID, 2015, pp. 121126.
    29. 29)
      • 10. Lu, W., Zhao, H., Liu, S.: ‘Demagnetization conditions comparison for line-start permanent magnet synchronous motors’. 2014 17th Int. Conf. on Electrical Machines and Systems (ICEMS), Hangzhou, 2014, pp. 4852.
    30. 30)
      • 5. Ghahfarokhi, M.M., Aliabad, A.D., Boroujeni, S.T., et al: ‘Analytical modelling and optimisation of line start LSPM synchronous motors’, IET Electr. Power Appl., 2020, 14, (3), pp. 398408.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2020.0497
Loading

Related content

content/journals/10.1049/iet-epa.2020.0497
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading