Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Multi-objective comprehensive teaching algorithm for multi-objective optimisation design of permanent magnet synchronous motor

The design of permanent magnet synchronous motor (PMSM) is a constrained multi-objective problem, and there are often conflicts between the goals. Aiming at the complexity of PMSM optimisation and a large number of variables, multi-objective optimisation design of PMSM using a multi-objective comprehensive teaching algorithm (MCTA) is proposed. This algorithm is improved based on the teaching–learning-based optimisation algorithm and can better adapt to large-scale sample space and multivariate optimisation. Also, based on a magnetic equivalent circuit, a static electromagnetic model of the radial magnetic field PMSM is derived, and the design requirements and goals of the PMSM are analysed. In the two PMSM multi-objective optimisation calculation processes, the optimal solution was calculated based on the composite fitness function and Pareto front, respectively. The results of the MCTA were compared with other natural optimisation algorithms. Finally, according to the optimisation results of two sets of experiments, the correctness of the optimal solution of the algorithm was verified by finite element analysis and actual measurement of the prototype. The analysis of results shows the effectiveness, simplicity, and inspiration of MCTA in the PMSM multi-objective structure optimisation design.

References

    1. 1)
      • 7. Pan, C., Chen, W., Yun, Y.: ‘Fault diagnostic method of power transformers based on hybrid genetic algorithm evolving wavelet neural network’, IET Electr. Power Appl., 2008, 2, (1), pp. 7176.
    2. 2)
      • 27. Zhou, G.F., Moayedi, H., Foong, L.K.: ‘Teaching-learning-based metaheuristic scheme for modifying neural computing in appraising energy performance of building’, Eng. Comput., 2020, pp. 112, Early Access p. 12 (in English).
    3. 3)
      • 26. Rao, R.V., Savsani, V.J., Vakharia, D.P.: ‘Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems’, Inf. Sci., 2012, 183, (1), pp. 115.
    4. 4)
      • 40. Sebastian, T., Slemon, G.: ‘Modelling of permanent magnet synchronous motors’, IEEE Trans. Magn., 1986, 22, (5), pp. 10691071.
    5. 5)
      • 13. Ruba, M., Jurca, F., Czumbil, L., et al: ‘Synchronous reluctance machine geometry optimisation through a genetic algorithm based technique’, IET Electr. Power Appl., 2017, 12, (3), pp. 431438.
    6. 6)
      • 30. Kheireddine, B., Zoubida, B., Tarik, H., et al: ‘Application of PSO and TLBO algorithms with neural network for optimal design of electrical machines’, COMPEL-Int. J. Comput. Math. Electr. Electron. Eng., 2018, 37, (2), pp. 549564.
    7. 7)
      • 34. Rao, R.V., Rai, D.P., Balic, J.: ‘Multi-objective optimization of machining and micro-machining processes using non-dominated sorting teaching–learning-based optimization algorithm’, J. Intell. Manuf., 2018, 29, (8), pp. 17151737.
    8. 8)
      • 37. Krishnan, R.: ‘Permanent magnet synchronous and brushless DC motor drives’ (CRC press, Florida, USA, 2017).
    9. 9)
      • 28. Cheng, M.Y., Prayogo, D.: ‘A novel fuzzy adaptive teaching-learning-based optimization (FATLBO) for solving structural optimization problems’, Eng. Comput., 2017, 33, (1), pp. 5569(in English).
    10. 10)
      • 31. Sharma, P., Gupta, R.: ‘Tuning of PID controller for a linear BLDC motor using TLBO technique’. 2014 Int. Conf. on Computational Intelligence and Communication Networks, 2014, pp. 12241228.
    11. 11)
      • 32. Rao, R., Patel, V.: ‘An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems’, Int. J. Ind. Eng. Comput., 2012, 3, (4), pp. 535560.
    12. 12)
      • 36. Wang, X., Li, Y., Wu, Y., et al: ‘Determination of working point of permanent magnet for radial magnetizing permanent magnet motor’, Electr. Electr. Technol., 1998, 1, (3), pp. 35.
    13. 13)
      • 33. Rao, R.V., Savsani, V.J., Vakharia, D.P.: ‘Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems’, Comput.-Aided Des., 2011, 43, (3), pp. 303315.
    14. 14)
      • 15. Virtič, P., Vražić, M., Papa, G.: ‘Design of an axial flux permanent magnet synchronous machine using analytical method and evolutionary optimization’, IEEE Trans. Energy Convers., 2015, 31, (1), pp. 150158.
    15. 15)
      • 35. Yang, J.: ‘Analysis and research on the interactive cases of teachers and students in F2F’, M. S. thesis, Northeast Normal Univ., Changchun, People's Republic of China, 2016.
    16. 16)
      • 22. Hong, G., Wei, T., Ding, X.: ‘Multi-objective optimal design of permanent magnet synchronous motor for high efficiency and high dynamic performance’, IEEE Access, 2018, 6, pp. 2356823581.
    17. 17)
      • 1. Si, M., Yang, X.Y., Zhao, S.W., et al: ‘Design and analysis of a novel spoke-type permanent magnet synchronous motor’, IET Electr. Power Appl., 2016, 10, (6), pp. 571580.
    18. 18)
      • 5. Zhu, J., Li, S., Song, D., et al: ‘Multi-objective optimisation design of air-cored axial flux PM generator’, IET Electr. Power Appl., 2018, 12, (9), pp. 13901395.
    19. 19)
      • 21. Parasiliti, F., Villani, M., Lucidi, S., et al: ‘Finite-element-based multiobjective design optimization procedure of interior permanent magnet synchronous motors for wide constant-power region operation’, IEEE Trans. Ind. Electron., 2011, 59, (6), pp. 25032514.
    20. 20)
      • 24. Öksüztepe, E.: ‘In-wheel switched reluctance motor design for electric vehicles by using a pareto-based multiobjective differential evolution algorithm’, IEEE Trans. Veh. Technol., 2016, 66, (6), pp. 47064715.
    21. 21)
      • 3. Lee, S., Kim, K., Cho, S., et al: ‘Optimal design of interior permanent magnet synchronous motor considering the manufacturing tolerances using Taguchi robust design’, IET Electr. Power Appl., 2014, 8, (1), pp. 2328(in English).
    22. 22)
      • 29. Bouchekara, H., Nahas, M.: ‘Optimization of electro-magnetics problems using an improved teaching-learning-based-optimization technique’, Appl. Comput. Electromagn. Soc. J., 2015, 30, (12), pp. 13411347.
    23. 23)
      • 12. Deb, K., Pratap, A., Agarwal, S., et al: ‘A fast and elitist multiobjective genetic algorithm: NSGA-II’, IEEE Trans. Evol. Comput., 2002, 6, (2), pp. 182197.
    24. 24)
      • 38. Gieras, J.F., Gieras, I.A.: ‘Performance analysis of a coreless permanent magnet brushless motor’. Conf. Record of the 2002 IEEE Industry Applications Conf. 37th IAS Annual Meeting (Cat. No. 02CH37344), 2002, vol. 4, pp. 24772482.
    25. 25)
      • 41. Tan, J., Shao, X.: ‘Permanent magnet brushless DC technology. Beijing’ (China Machine Press, Beijing, People's Republic of China, 2018).
    26. 26)
      • 17. Mahmoudi, A., Kahourzade, S., Rahim, N.A., et al: ‘Design, analysis, and prototyping of an axial-flux permanent magnet motor based on genetic algorithm and finite-element analysis’, IEEE Trans. Magn., 2012, 49, (4), pp. 14791492.
    27. 27)
      • 16. Rostami, N., Feyzi, M.R., Pyrhonen, J., et al: ‘Genetic algorithm approach for improved design of a variable speed axial-flux permanent-magnet synchronous generator’, IEEE Trans. Magn., 2012, 48, (12), pp. 48604865.
    28. 28)
      • 14. Vidanalage, B.D.G., Toulabi, M.S., Filizadeh, S.: ‘Electromagnetic design optimization and sensitivity analysis for IPM synchronous motors’. 2017 IEEE Int. Conf. on Industrial Technology (ICIT), 2017, pp. 288293.
    29. 29)
      • 11. Eroglu, U., Tufekci, E.: ‘Crack modeling and identification in curved beams using differential evolution’, Int. J. Mech. Sci., 2017, 131, pp. 435450(in English).
    30. 30)
      • 25. Mirjalili, S., Jangir, P., Saremi, S.: ‘Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems’, Appl. Intell., 2017, 46, (1), pp. 7995(in English).
    31. 31)
      • 10. Soued, S., Ebrahim, M.A., Ramadan, H.S., et al: ‘Optimal blade pitch control for enhancing the dynamic performance of wind power plants via metaheuristic optimisers’, IET Electr. Power Appl., 2017, 11, (8), pp. 14321440(in English).
    32. 32)
      • 2. Zhang, Y., Cao, W., McLoone, S., et al: ‘Design and flux-weakening control of an interior permanent magnet synchronous motor for electric vehicles’, IEEE Trans. Appl. Supercond., 2016, 26, (7), pp. 16.
    33. 33)
      • 23. Bonthu, S.S.R., Choi, S., Baek, J.: ‘Design optimization with multiphysics analysis on external rotor permanent magnet-assisted synchronous reluctance motors’, IEEE Trans. Energy Convers., 2017, 33, (1), pp. 290298.
    34. 34)
      • 4. Du, J., Wang, X., Lv, H.: ‘Optimization of magnet shape based on efficiency map of IPMSM for EVs’, IEEE Trans. Appl. Supercond., 2016, 26, (7), pp. 17.
    35. 35)
      • 8. Acikbas, S., Soylemez, M.T.: ‘Coasting point optimisation for mass rail transit lines using artificial neural networks and genetic algorithms’, IET Electr. Power Appl., 2008, 2, (3), pp. 172182(in English).
    36. 36)
      • 9. Huynh, D.C., Dunnigan, M.W.: ‘Parameter estimation of an induction machine using advanced particle swarm optimisation algorithms’, IET Electr. Power Appl., 2010, 4, (9), pp. 748760(in English).
    37. 37)
      • 20. Lee, J.H., Kim, J.-W., Song, J.-Y., et al: ‘A novel memetic algorithm using modified particle swarm optimization and mesh adaptive direct search for PMSM design’, IEEE Trans. Magn., 2015, 52, (3), pp. 14.
    38. 38)
      • 19. Song, T., Zhang, Z., Liu, H., et al: ‘Multi-objective optimisation design and performance comparison of permanent magnet synchronous motor for EVs based on FEA’, IET Electr. Power Appl., 2019, 13, (8), pp. 11571166.
    39. 39)
      • 6. Chen, H., Yan, W., Gu, J.J., et al: ‘Multiobjective optimization design of a switched reluctance motor for low-speed electric vehicles with a Taguchi–CSO algorithm’, IEEE/ASME Trans. Mechatronics, 2018, 23, (4), pp. 17621774.
    40. 40)
      • 39. Wang, X.: ‘Research on Halbach array disc type coreless permanent magnet synchronous motor’, Ph. D. thesis, Shenyang University of Technology, Shenyang, People's Republic of China, 2006.
    41. 41)
      • 18. Aydin, E., Li, Y., Aydmt, I., et al: ‘Minimization of torque ripples of interior permanent magnet synchronous motors by particle swarm optimization technique’. 2015 IEEE Transportation Electrification Conf. and Expo, 2015, pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2020.0322
Loading

Related content

content/journals/10.1049/iet-epa.2020.0322
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address